Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan:159:103023.
doi: 10.1016/j.artmed.2024.103023. Epub 2024 Nov 17.

DMHGNN: Double multi-view heterogeneous graph neural network framework for drug-target interaction prediction

Affiliations

DMHGNN: Double multi-view heterogeneous graph neural network framework for drug-target interaction prediction

Qiao Ning et al. Artif Intell Med. 2025 Jan.

Abstract

Accurate identification of drug-target interactions (DTIs) plays a crucial role in drug discovery. Compared with traditional experimental methods that are labor-intensive and time-consuming, computational methods for drug-target interactions prediction are more popular in recent years. Conventional computational methods almost simply view heterogeneous network constructed by the drug-related and protein-related dataset instead of comprehensively exploring drug-protein pair (DPP) information. To address this limitation, we proposed a Double Multi-view Heterogeneous Graph Neural Network framework for drug-target interaction prediction (DMHGNN). In DMHGNN, one multi-view heterogeneous graph neural network is based on meta-paths and denoising autoencoder for protein-, drug-related heterogeneous network learning, and another multi-view heterogeneous graph neural network is based on multi-channel graph convolutional network for drug-protein pair similarity network learning. First, a meta-path-based graph encoder with the attention mechanism is used for substructure learning of complex relationships from heterogeneous network constructed by proteins, drugs, side-effects and diseases, obtaining key information that is easy to be ignored in global learning of heterogeneous networks, and multi-source neighbouring features for drugs and proteins are learned from heterogeneous network via denoising auto-encoder model. Then, multi-view graphs of drug-protein pairs (DPPs) including the topology graph, semantics graph and collaborative graph with shared weights are constructed, and the multi-channel graph convolutional network (GCN) is utilized to learn the deep representation of DPPs. Finally, a multi-layer fully connection network is trained to predict drug-target interactions. Experiments have demonstrated its effectiveness and better performance than state-of-the-art methods.

Keywords: DTIs prediction; Double multi-view graphs; Drug-protein pair network; Meta-path-based graph encoder.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Qiao Ning reports financial support was provided by the National Natural Science Foundation of China.

Similar articles

References

Publication types

LinkOut - more resources