Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar;44(7):450-461.
doi: 10.1038/s41388-024-03234-7. Epub 2024 Nov 23.

GNAO1 overexpression promotes neural differentiation of glioma stem-like cells and reduces tumorigenicity through TRIM21/CREB/HES1 axis

Affiliations

GNAO1 overexpression promotes neural differentiation of glioma stem-like cells and reduces tumorigenicity through TRIM21/CREB/HES1 axis

Bowen Sun et al. Oncogene. 2025 Mar.

Abstract

Inducing tumor cell differentiation is a promising strategy for treating malignant cancers, including glioma, yet the critical regulator(s) underlying glioma cell differentiation is poorly understood. Here, we identify G Protein Subunit Alpha O1 (GNAO1) as a critical regulator of neural differentiation of glioma stem-like cells (GSCs). GNAO1 expression was lower in gliomas than in normal neuronal tissues and high expression of GNAO1 correlated with a better prognosis. GNAO1 overexpression markedly promoted neural differentiation of GSCs, leading to decreased cell proliferation and colony formation. Mechanistically, GNAO1 recruited TRIM21 and facilitated TRIM21-mediated ubiquitination. This ubiquitination resulted in the degradation of CREB and further reduced p300-mediated H3K27ac levels of the HES1 promoter. As a result, GNAO1 overexpression downregulated HES1 expression, which reinforced neuronal differentiation. In addition, knockdown of METTL3, a key writer of the N6-methyladenosine (m6A), enhanced GNAO1 mRNA stability. Treatment with GNAO1 adenovirus increased neuronal differentiation of tumor cells and reduced tumor cell proliferation in orthotopic GSC xenografts and temozolomide further enhanced GNAO1 adenovirus effects, resulting in extended animal survival. Our study presents that engineering GNAO1 overexpression-inducing neural differentiation of GSCs is a potential therapy strategy via synergistic inhibition of malignant proliferation and chemotherapy resistance.

PubMed Disclaimer

Conflict of interest statement

Competing interests: The authors declare no competing interests. Consent for publication: All authors give consent for the publication of the manuscript. Ethics approval and consent to participate: All clinical brain tissue specimens were collected at Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine in accordance with a protocol approved by Shanghai Jiao Tong University Institutional Clinical Care and Use Committee of Renji Hospital (Shanghai, China). The investigators obtained informed written consent from the patients. These specimens were examined and diagnosed by pathologists at Ren Ji Hospital. All animal experiments were conducted under the Institutional Animal Care and Use Committee (IACUC)-approved protocols at Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine following NIH and institutional guidelines. The approval number was RJ2022-0828.

Similar articles

Cited by

References

    1. Hausmann D, Hoffmann DC, Venkataramani V, Jung E, Horschitz S, Tetzlaff SK, et al. Autonomous rhythmic activity in glioma networks drives brain tumour growth. Nature. 2023;613:179–86. - DOI - PubMed
    1. Caccese M, Indraccolo S, Zagonel V, Lombardi G. PD-1/PD-L1 immune-checkpoint inhibitors in glioblastoma: A concise review. Crit Rev Oncol Hematol. 2019;135:128–34. - DOI - PubMed
    1. Maghrouni A, Givari M, Jalili-Nik M, Mollazadeh H, Bibak B, Sadeghi MM, et al. Targeting the PD-1/PD-L1 pathway in glioblastoma multiforme: Preclinical evidence and clinical interventions. Int Immunopharmacol. 2021;93:107403. - DOI - PubMed
    1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109. - DOI - PubMed - PMC
    1. Chen YC, Ma NX, Pei ZF, Wu Z, Do-Monte FH, Keefe S, et al. A NeuroD1 AAV-Based Gene Therapy for Functional Brain Repair after Ischemic Injury through In Vivo Astrocyte-to-Neuron Conversion. Mol Ther. 2020;28:217–34. - DOI - PubMed

MeSH terms

Substances