Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2024 Nov 20;13(4):263-273.
doi: 10.1080/20476965.2024.2402128. eCollection 2024.

Towards new frontiers of healthcare systems research using artificial intelligence and generative AI

Affiliations
Editorial

Towards new frontiers of healthcare systems research using artificial intelligence and generative AI

Samir Chatterjee et al. Health Syst (Basingstoke). .
No abstract available

PubMed Disclaimer

References

    1. Adler, E. D., Voors, A. A., Klein, L., Macheret, F., Braun, O. O., Urey, M. A., Zhu, W., Sama, I., Tadel, M., Campagnari, C., Greenberg, B., & Yagil, A. (2020). Improving risk prediction in heart failure using machine learning. European Journal of Heart Failure, 22(1), 139–147. 10.1002/ejhf.1628 - DOI - PubMed
    1. Agarwal, S. (2023). An intelligent machine learning approach for fraud detection in medical claim insurance: A comprehensive study. Scholars Journal of Engineering and Technology, 11(9), 191–200. 10.36347/sjet.2023.v11i09.003 - DOI
    1. Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M., & Church, G. M. (2019). Unified rational protein engineering with sequence-based deep representation learning. Nature Methods, 16(12), 1315–1322. 10.1038/s41592-019-0598-1 - DOI - PMC - PubMed
    1. Alnosayan, N., Chatterjee, S., Alluhaidan, A., Lee, E., & Feenstra, L. H. (2017). Design and usability of a heart failure mHealth system: A pilot study. JMIR Human Factors, 4(1), e6481. 10.2196/humanfactors.6481 - DOI - PMC - PubMed
    1. Ardila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reicher, J. J., Peng, L., Tse, D., Etemadi, M., Ye, W., Corrado, G., Naidich, D. P., & Shetty, S. (2019). End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature Medicine, 25(6), 954–961. 10.1038/s41591-019-0447-x - DOI - PubMed

Publication types

LinkOut - more resources