Effects of Physical Exercise Breaks on Executive Function in a Simulated Classroom Setting: Uncovering a Window into the Brain
- PMID: 39584316
- PMCID: PMC11744571
- DOI: 10.1002/advs.202406631
Effects of Physical Exercise Breaks on Executive Function in a Simulated Classroom Setting: Uncovering a Window into the Brain
Abstract
Acknowledging the detrimental effects of prolonged sitting, this study examined the effects of an acute exercise break during prolonged sitting on executive function, cortical hemodynamics, and microvascular status. In this randomized crossover study, 71 college students completed three conditions: (i) uninterrupted sitting (SIT); (ii) SIT with a 15 min moderate-intensity cycling break (MIC); and (iii) SIT with a 15 min vigorous-intensity cycling break (VIC). Behavioral outcomes, retinal vessel diameters (central retinal artery equivalents [CRAE], retinal vein equivalents [CRVE], arteriovenous ratio [AVR]), cortical activation, and effective connectivity were evaluated. Linear mixed models identified significant positive effects of exercise conditions on behavioral reaction time (RT), error rate, and inverse efficiency score (β = -2.62, -0.19, -3.04: ps < 0.05). MIC and VIC conditions produced pre-to-post-intervention increases in CRAE and CRVE (β = 4.46, 6.34), frontal activation, and resting-state and task-state causal density (β = 0.37, 0.06) (ps < 0.05) compared to SIT; VIC was more beneficial for executive function and neurobiological parameters. The effect of AVR on average RT was mediated through task-based causal density (indirect effect: -0.82). Acutely interrupting prolonged sitting improves executive function, microvascular status, and cortical activation and connectivity, with causal density mediating the microvascular-executive function link.
Keywords: brain Health; cerebrovascular health; effective connectivity; microvascular health; sedentary behavior; young adults.
© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






References
-
- a) Petruzzello S. J., Han M., Nowell P., J. Sport Exercise Psychol. 1997, 19, 249;
- b) Sibley B. A., Etnier J. L., Pediat. Exercise Sci. 2003, 15, 243;
- c) Lambourne K., Tomporowski P., Brain Res. 2010, 12, 1341; - PubMed
- d) Chang Y. K., Labban J. D., Gapin J. I., Etnier J. L., Brain Res. 2012, 87, 1453. - PubMed
-
- a) Kao S.‐C., Chen F.‐T., Moreau D., Drollette E. S., Amireault S., Chu C.‐H., Chang Y.‐K., Int. Rev. Sport Exercise Psychol. 2023, 1, 2155488;
- b) Lichtman S., Poser E. G., J. Psychosom. Res. 1983, 27, 43; - PubMed
- c) Hogervorst E., Riedel W., Jeukendrup A., Jolles J., Percept. Mot Skills 1996, 83, 479; - PubMed
- d) Chang Y.‐K., Etnier J. L., Psychol. Sport Exercise 2009, 10, 19;
- e) Chang Y. K., Etnier J. L., J. Sport Exerc. Psychol. 2009, 31, 640; - PubMed
- f) Barella L. A., Etnier J. L., Chang Y. K., J. Aging Phys. Act. 2010, 18, 87; - PubMed
- g) Yanagisawa H., Dan I., Tsuzuki D., Kato M., Okamoto M., Kyutoku Y., Soya H., Neuroimage 2010, 50, 1702; - PubMed
- h) Chang Y.‐K., Liu S., Yu H.‐H., Lee Y.‐H., Archiv. Clin. Neuropsychol. 2012, 27, 225; - PubMed
- i) Byun K., Hyodo K., Suwabe K., Ochi G., Sakairi Y., Kato M., Dan I., Soya H., Neuroimage 2014, 98, 336; - PubMed
- j) Chang Y.‐K., Tsai C.‐L., Huang C.‐C., Wang C.‐C., Chu I.‐H., J. Sci. Med. Sport 2014, 17, 51; - PubMed
- k) Ludyga S., Gerber M., Brand S., Holsboer‐Trachsler E., Puhse U., Psychophysiology 2016, 53, 1611; - PubMed
- l) Peruyero F., Zapata J., Pastor D., Cervello E., Front. Psychol. 2017, 8, 921; - PMC - PubMed
- m) Moreau D., Chou E., Perspect. Psychol. Sci. 2019, 14, 734. - PubMed
-
- Banich M. T., Current directions in psychological science 2009, 18, 89.
-
- Stroop J. R., J. Experiment. Psychol. 1935, 18, 643.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical