Polyphenols and Functionalized Hydrogels for Osteoporotic Bone Regeneration
- PMID: 39588839
- DOI: 10.1002/marc.202400653
Polyphenols and Functionalized Hydrogels for Osteoporotic Bone Regeneration
Abstract
Osteoporosis induces severe oxidative stress and disrupts bone metabolism, complicating the treatment of bone defects. Current therapies often have side effects and require lengthy bone regeneration periods. Hydrogels, known for their flexible mechanical properties and degradability, are promising carriers for drugs and bioactive factors in bone tissue engineering. However, they lack the ability to regulate the local pathological environment of osteoporosis and expedite bone repair. Polyphenols, with antioxidative, anti-inflammatory, and bone metabolism-regulating properties, have emerged as a solution. Combining hydrogels and polyphenols, polyphenol-based hydrogels can regulate local bone metabolism and oxidative stress while providing mechanical support and tissue adhesion, promoting osteoporotic bone regeneration. This review first provides a brief overview of the types of polyphenols and the mechanisms of polyphenols in facilitating adhesion, antioxidant, anti-inflammatory, and bone metabolism modulation in modulating the pathological environment of osteoporosis. Next, this review examines recent advances in hydrogels for the treatment of osteoporotic bone defects, including their use in angiogenesis, oxidative stress modulation, drug delivery, and stem cell therapy. Finally, it highlights the latest research on polyphenol hydrogels in osteoporotic bone defect regeneration. Overall, this review aims to facilitate the clinical application of polyphenol hydrogels for the treatment of osteoporotic bone defects.
Keywords: hydrogels; osteoporotic bone regeneration; polyphenols.
© 2024 Wiley‐VCH GmbH.
Similar articles
-
Polyphenol-Mediated Electroactive Hydrogel with Armored Exosomes Delivery for Bone Regeneration.ACS Nano. 2025 May 13;19(18):17796-17812. doi: 10.1021/acsnano.5c03256. Epub 2025 May 1. ACS Nano. 2025. PMID: 40310951
-
Injectable, anti-collapse, adhesive, plastic and bioactive bone graft substitute promotes bone regeneration by moderating oxidative stress in osteoporotic bone defect.Acta Biomater. 2024 May;180:82-103. doi: 10.1016/j.actbio.2024.04.016. Epub 2024 Apr 15. Acta Biomater. 2024. PMID: 38621599
-
Multifunctional tannic acid-based nanocomposite methacrylated silk fibroin hydrogel with the ability to scavenge reactive oxygen species and reduce inflammation for bone regeneration.Int J Biol Macromol. 2024 May;266(Pt 2):131357. doi: 10.1016/j.ijbiomac.2024.131357. Epub 2024 Apr 3. Int J Biol Macromol. 2024. PMID: 38580010
-
Plant Polyphenol-Based Injectable Hydrogels: Advances and Biomedical Applications.Adv Healthc Mater. 2025 May;14(12):e2500445. doi: 10.1002/adhm.202500445. Epub 2025 Mar 27. Adv Healthc Mater. 2025. PMID: 40150799 Review.
-
Polyphenols as a versatile component in tissue engineering.Acta Biomater. 2021 Jan 1;119:57-74. doi: 10.1016/j.actbio.2020.11.004. Epub 2020 Nov 7. Acta Biomater. 2021. PMID: 33166714 Review.
Cited by
-
TNF receptor-associated factors: promising targets of natural products for the treatment of osteoporosis.Front Physiol. 2025 May 27;16:1527814. doi: 10.3389/fphys.2025.1527814. eCollection 2025. Front Physiol. 2025. PMID: 40496246 Free PMC article. Review.
-
PPARγ inhibitors enhance the efficacy of statin therapy for steroid-induced osteonecrosis of the femoral head by directly inhibiting apoptosis and indirectly modulating lipoprotein subfractions.PLoS One. 2025 Jun 20;20(6):e0325190. doi: 10.1371/journal.pone.0325190. eCollection 2025. PLoS One. 2025. PMID: 40540523 Free PMC article.
References
-
- T. D. Rachner, S. Khosla, L. C. Hofbauer, Lancet 2011, 377, 1276.
-
- T. R. Kuo, C. H. Chen, Biomarker Res. 2017, 5, 18.
-
- M. X. Ji, Q. Yu, Y. Pan, Chronic Dis. Translat. Med. 2015, 01, 9.
-
- J. N. Farr, J. L. Rowsey, B. A. Eckhardt, B. S. Thicke, D. G. Fraser, T. Tchkonia, J. L. Kirkland, D. G. Monroe, S. Khosla, J. Bone Miner. Res. 2019, 34, 1407.
-
- J. N. Farr, D. G. Fraser, H. Wang, K. Jaehn, M. B. Ogrodnik, M. M. Weivoda, M. T. Drake, T. Tchkonia, N. K. LeBrasseur, J. L. Kirkland, L. F. Bonewald, R. J. Pignolo, D. G. Monroe, S. Khosla, J. Bone Miner. Res. 2016, 31, 1920.
Publication types
MeSH terms
Substances
Grants and funding
- 2023YFC2411300/National Key Research and Development Program of China
- 32471392/National Natural Science Foundation of China
- 82072071/National Natural Science Foundation of China
- 82072073/National Natural Science Foundation of China
- 2682023ZTPY056/Fundamental Research Funds for the Central Universities
- 2682024ZTPY003/Fundamental Research Funds for the Central Universities
- 2682024ZTZD001/Fundamental Research Funds for the Central Universities
- 2682023JX005/New Interdisciplinary Cultivation Fund of SWJTU
- 2682024QZ025/New Interdisciplinary Cultivation Fund of SWJTU
- 2682024QZ026/New Interdisciplinary Cultivation Fund of SWJTU
- 25NSFJQ0178/Sichuan Science and Technology Program
LinkOut - more resources
Full Text Sources
Medical