Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec;197(Pt 1):115272.
doi: 10.1016/j.foodres.2024.115272. Epub 2024 Oct 28.

Portable sensing of hydrogen peroxide using MOF-based nanozymes

Affiliations

Portable sensing of hydrogen peroxide using MOF-based nanozymes

LingFeng Yang et al. Food Res Int. 2024 Dec.

Abstract

Hydrogen peroxide (H2O2) is extensively used in water treatment and food preservation for its pathogen-killing efficacy. Excessive H2O2 intake, however, can lead to poisoning with symptoms such as abdominal pain and breathing difficulties. Additionally, small amounts of H2O2 may be generated during food preservation, necessitating careful control to meet safety regulations. Real-time detection of H2O2 is crucial for process safety and compliance. In this study, a Zr-MOF-based colorimetric fluorescent nanozyme sensor (NH2-UiO-67(Zr/Cu)) along with a smartphone-assisted portable device were developed for detecting H2O2. The sensor, NH2-UiO-67(Zr/Cu), combines the stable structural properties of Zr-MOF with ligand-generated fluorescence and exhibits peroxidase-like activity. The sensor demonstrated a detection range of 0-1000 μM, with limits of detection (LOD) of 0.0057 μM for the colorimetric assay and 0.0020 μM for the fluorescence assay. Additionally, we designed and developed a portable, smartphone-assisted device using 3D printing technology. This device offers a detection range of 0-750 μM, with LODs of 0.0093 μM in colorimetric mode and 0.0311 μM in fluorescence mode. The developed colorimetric fluorescent nanozyme sensor and portable device show significant potential for the rapid on-site detection of H2O2, offering a more convenient and reliable approach for quick identification of analytes in practical applications.

Keywords: H(2)O(2) detection; Nanozyme; Portable device; RGB analysis; UiO-67-NH(2).

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

MeSH terms

LinkOut - more resources