Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2024 Nov 15;16(22):3900.
doi: 10.3390/nu16223900.

Carnosine Supplementation Has No Effect on Inflammatory Markers in Adults with Prediabetes and Type 2 Diabetes: A Randomised Controlled Trial

Affiliations
Randomized Controlled Trial

Carnosine Supplementation Has No Effect on Inflammatory Markers in Adults with Prediabetes and Type 2 Diabetes: A Randomised Controlled Trial

Saeede Saadati et al. Nutrients. .

Abstract

Background/objectives: In vitro studies suggest that carnosine reduces inflammation by upregulating anti-inflammatory mediators and downregulating pro-inflammatory cytokines. However, human clinical trials examining the effects of carnosine on inflammatory biomarkers are scant. We conducted a secondary analysis of a double-blind randomised controlled trial (RCT) to examine the effects of carnosine supplementation on inflammatory markers and adipokines in participants with prediabetes or well-controlled type 2 diabetes (T2D).

Methods: Out of 88 participants who were recruited, 49 adults with prediabetes or well-controlled T2D (HbA1c: 6.6 ± 0.7% [mean ± SD]) who were treated with diet and/or metformin were eligible for inclusion. Participants were randomised to receive 2 g/day of carnosine or a matching placebo for 14 weeks. We measured serum concentrations of monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-6, IL-10, C-reactive protein (CRP), tumour necrosis factor-α (TNF-α), adiponectin, leptin, adipsin, serpin, and resistin levels at baseline and after 14 weeks. The trial was registered at clinicaltrials.gov (NCT02917928).

Results: Forty-one participants (M = 29/F = 12) aged 53 (42.6, 59.3) years [median (IQR)] completed the trial. After 14 weeks of supplementation, changes in pro- and anti-inflammatory cytokine and adipokine levels did not differ between the carnosine and placebo groups (p > 0.05 for all). The results remained unchanged after adjustment for confounders including age, sex, and anthropometric measures (e.g., body fat percentage and visceral adipose tissue).

Conclusions: In individuals with prediabetes and well-controlled T2D, carnosine supplementation did not result in any significant changes in inflammatory markers. Larger RCTs with longer follow-up durations are needed to evaluate whether carnosine may be beneficial in individuals with poorly controlled T2D.

Keywords: carnosine; cytokine; inflammation; insulin resistance; prediabetes; randomised trial; type 2 diabetes.

PubMed Disclaimer

Conflict of interest statement

The authors report no conflicts of interest. Flamma Group provided the carnosine and placebo for the intervention, but did not contribute to the study design, conduct, analysis, or reporting.

Figures

Figure 1
Figure 1
Study design and flow of participants.

References

    1. Ong K.L., Stafford L.K., McLaughlin S.A., Boyko E.J., Vollset S.E., Smith A.E., Dalton B.E., Duprey J., Cruz J.A., Hagins H., et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402:203–234. doi: 10.1016/S0140-6736(23)01301-6. - DOI - PMC - PubMed
    1. Xourafa G., Korbmacher M., Roden M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2024;20:27–49. doi: 10.1038/s41574-023-00898-1. - DOI - PubMed
    1. Ruze R., Liu T., Zou X., Song J., Chen Y., Xu R., Yin X., Xu Q. Obesity and type 2 diabetes mellitus: Connections in epidemiology, pathogenesis, and treatments. Front. Endocrinol. 2023;14:1161521. doi: 10.3389/fendo.2023.1161521. - DOI - PMC - PubMed
    1. Daryabor G., Atashzar M.R., Kabelitz D., Meri S., Kalantar K. The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Front. Immunol. 2020;11:1582. doi: 10.3389/fimmu.2020.01582. - DOI - PMC - PubMed
    1. Dludla P.V., Mabhida S.E., Ziqubu K., Nkambule B.B., Mazibuko-Mbeje S.E., Hanser S., Basson A.K., Pheiffer C., Kengne A.P. Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. World J. Diabetes. 2023;14:130. doi: 10.4239/wjd.v14.i3.130. - DOI - PMC - PubMed

Publication types

MeSH terms

Associated data