Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 18;15(48):20215-20222.
doi: 10.1039/d4sc03996c. eCollection 2024 Dec 11.

6,6'-Biindeno[1,2- b]fluorene: an open-shell indenofluorene dimer

Affiliations

6,6'-Biindeno[1,2- b]fluorene: an open-shell indenofluorene dimer

Himanshu Sharma et al. Chem Sci. .

Abstract

Nakano et al. reported that the antiaromatic indenofluorene (IF) isomers are diradicaloid molecules having varying degrees of open-shell character, with indeno[1,2-b]fluorene displaying a weaker diradical character index (y 0 = 0.072). Unlike 6,12-trimethylsilylethynyl disubstituted [1,2-b]IF, the 6,12-aryl disubstituted [1,2-b]IF derivatives did not show any experimental evidence of diradical properties. This raised the question of whether a [1,2-b]IF dimer would prefer a closed-shell or an open-shell ground state. To address this, herein we report the synthesis of a 6,6'-biindeno[1,2-b]fluorene derivative, which is a [1,2-b]IF dimer, constructed by linking two [1,2-b]IF units with a C-C single bond at carbons 6 and 6' bearing the largest orbital coefficients for the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO). The C6-C6' linkage effectively narrowed the HOMO-LUMO gap while the strong desire to avoid s-indacene antiaromaticity restored two Clar sextets in two proaromatic para-quinodimethane subunits, resulting in an open-shell bifluorenylidene-type diradicaloid (y 0 = 0.268) ground state with minor tetraradical character index (y 1 = 0.007). The open-shell nature was confirmed by single crystal X-ray and electron paramagnetic resonance analyses, and supported by theoretical calculations.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. (a) Antiaromatic indeno[1,2-b]fluorene derivatives 1-M, 1-MF and 2; (b) Zimmerman and Stępień's tetrafluorenofulvalene (TFF) 3; (c) our reported 3,3′-biindeno[1,2-b]fluorene derivative 4; (d) closed-shell structure of targeted mesityl disubstituted 6,6′-biindeno[1,2-b]fluorene 5 and its representative open-shell (OS) diradicaloid bifluorenylidene-type structure 5-OS1 and tetraradicaloid biindenofluorene-type structure 5-OS2.
Fig. 2
Fig. 2. (a) Spin density map of 5. Isovalue for surfaces: MO = 0.02, density = 0.005; frontier molecular orbital profiles for the (b) α-spin and (c) β-spin of 5.
Scheme 1
Scheme 1. Synthesis of BIF 5.
Fig. 3
Fig. 3. (a) X-ray crystallographic structure of 5 with the ellipsoids drawn at 30% probability level (hydrogens omitted), including NICS(1)zz (blue) and HOMA (green) indices; (b) side-view of 5; (c) EPR spectra of 5 recorded at variable temperatures for the powder form.
Fig. 4
Fig. 4. Current–density vectors plotted onto the ACID isosurface of 0.02 for the π system of 5.
Fig. 5
Fig. 5. (a) UV-vis-NIR spectrum of 5 in chloroform; (b) CV and DPV of 5.

References

    1. Wu J., Diradicaloids, Jenny Stanford Publishing, New York, 2022
    1. Hu J. Xiang Q. Tian X. Ye L. Wang Y. Ni Y. Chen X. Liu Y. Chen G. Sun Z. J. Am. Chem. Soc. 2024;146:10321–10330. doi: 10.1021/jacs.3c11585. - DOI - PubMed
    2. Kuriakose F. Commodore M. Hu C. Fabiano C. J. Sen D. Li R. R. Bisht S. Üngör Ö. Lin X. Strouse G. F. DePrince III A. E. Lazenby R. A. Mentink-Vigier F. Shatruk M. Alabugin I. V. J. Am. Chem. Soc. 2022;144:23448–23464. doi: 10.1021/jacs.2c09637. - DOI - PubMed
    3. Borissov A. Chmielewski P. J. Gómez García C. J. Lis T. Stępień M. Angew. Chem., Int. Ed. 2023;62:e202309238. doi: 10.1002/anie.202309238. - DOI - PubMed
    4. Ravat P. Šolomek T. Rickhaus M. Häussinger D. Neuburger M. Baumgarten M. Juríček M. Angew. Chem., Int. Ed. 2016;55:1183–1186. doi: 10.1002/anie.201507961. - DOI - PubMed
    5. Feofanov M. Akhmetov V. Sharapa D. I. Amsharov K. Org. Lett. 2020;22:5741–5745. doi: 10.1021/acs.orglett.0c01717. - DOI - PubMed
    1. Muhammad S. Nakano M. Al-Sehemi A. G. Kitagawa Y. Irfan A. Chaudhry A. R. Kishi R. Ito S. Yoneda K. Fukuda K. Nanoscale. 2016;8:17998–18020. doi: 10.1039/C6NR06097H. - DOI - PubMed
    2. Nakano M. Chem. Rec. 2017;17:27–62. doi: 10.1002/tcr.201600094. - DOI - PubMed
    3. Zhou Z. Yang K. He L. Wang W. Lai W. Yang Y. Dong Y. Xie S. Yuan L. Zeng Z. J. Am. Chem. Soc. 2024;146:6763–6772. doi: 10.1021/jacs.3c13270. - DOI - PubMed
    4. Nakano M. Kishi R. Nitta T. Kubo T. Nakasuji K. Kamada K. Ohta K. Champagne B. Botek E. Yamaguchi K. J. Phys. Chem. A. 2005;109:885–891. doi: 10.1021/jp046322x. - DOI - PubMed
    5. Minami T. Nakano M. J. Phys. Chem. Lett. 2012;3:145–150. doi: 10.1021/jz2015346. - DOI - PubMed
    1. Liu C. Sandoval-Salinas M. E. Hong Y. Gopalakrishna T. Y. Phan H. Aratani N. Herng T. S. Ding J. Yamada H. Kim D. Casanova D. Wu J. Chem. 2018;4:1586–1595. doi: 10.1016/j.chempr.2018.03.020. - DOI
    2. Das S. Herng T. S. Zafra J. L. Burrezo P. M. Kitano M. Ishida M. Gopalakrishna T. Y. Hu P. Osuka A. Casado J. Ding J. Casanova D. Wu J. J. Am. Chem. Soc. 2016;138:7782–7790. doi: 10.1021/jacs.6b04539. - DOI - PubMed
    3. Horii K. Kishi R. Nakano M. Shiomi D. Sato K. Takui T. Konishi A. Yasuda M. J. Am. Chem. Soc. 2022;144:3370–3375. doi: 10.1021/jacs.2c00476. - DOI - PubMed
    1. Jousselin-Oba T. Mamada M. Marrot J. Maignan A. Adachi C. Yassar A. Frigoli M. J. Am. Chem. Soc. 2019;141:9373–9381. doi: 10.1021/jacs.9b03488. - DOI - PubMed
    2. Zong C. Zhu X. Xu Z. Zhang L. Xu J. Guo J. Xiang Q. Zeng Z. Hu W. Wu J. Li R. Sun Z. Angew. Chem., Int. Ed. 2021;60:16230–16236. doi: 10.1002/anie.202105872. - DOI - PubMed
    3. Hu X. Wang W. Wang D. Zheng Y. J. Mater. Chem. C. 2018;6:11232–11242. doi: 10.1039/C8TC04484H. - DOI

LinkOut - more resources