Stereochemistry in the disorder-order continuum of protein interactions
- PMID: 39604735
- PMCID: PMC11655355
- DOI: 10.1038/s41586-024-08271-6
Stereochemistry in the disorder-order continuum of protein interactions
Abstract
Intrinsically disordered proteins can bind via the formation of highly disordered protein complexes without the formation of three-dimensional structure1. Most naturally occurring proteins are levorotatory (L)-that is, made up only of L-amino acids-imprinting molecular structure and communication with stereochemistry2. By contrast, their mirror-image dextrorotatory (D)-amino acids are rare in nature. Whether disordered protein complexes are truly independent of chiral constraints is not clear. Here, to investigate the chiral constraints of disordered protein-protein interactions, we chose as representative examples a set of five interacting protein pairs covering the disorder-order continuum. By observing the natural ligands and their stereochemical mirror images in free and bound states, we found that chirality was inconsequential in a fully disordered complex. However, if the interaction relied on the ligand undergoing extensive coupled folding and binding, correct stereochemistry was essential. Between these extremes, binding could be observed for the D-ligand with a strength that correlated with disorder in the final complex. These findings have important implications for our understanding of the molecular processes that lead to complex formation, the use of D-peptides in drug discovery and the chemistry of protein evolution of the first living entities on Earth.
© 2024. The Author(s).
Conflict of interest statement
Competing interests: The authors declare no competing interests.
Figures











References
-
- Mason, S. F. Origins of biomolecular handedness. Nature311, 19–23 (1984). - PubMed
-
- Silverman, M. P., Badoz, J. & Briat, B. Chiral reflection from a naturally optically active medium. Opt. Lett.17, 886 (1992). - PubMed
-
- Ikawa, M. & Snell, E. E. Cell wall composition of lactic acid bacteria. J. Biol. Chem.235, 1376–1382 (1960). - PubMed
-
- Ikawa, M. & Snell, E. E. d-glutamic acid and amino sugars as cell wall constituents in lactic acid bacteria. Biochim. Biophys. Acta19, 576–578 (1956). - PubMed