Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar;38(3):100674.
doi: 10.1016/j.modpat.2024.100674. Epub 2024 Nov 28.

Analysis of ASCL1/NEUROD1/POU2F3/YAP1 Yields Novel Insights for the Diagnosis of Olfactory Neuroblastoma and Identifies Sinonasal Tuft Cell-Like Carcinoma

Affiliations

Analysis of ASCL1/NEUROD1/POU2F3/YAP1 Yields Novel Insights for the Diagnosis of Olfactory Neuroblastoma and Identifies Sinonasal Tuft Cell-Like Carcinoma

Christopher A Febres-Aldana et al. Mod Pathol. 2025 Mar.

Abstract

The diagnosis and treatment of sinonasal small round epithelial/neuroepithelial malignancies depend on the expression of conventional neuroendocrine markers (NEMs), such as synaptophysin, chromogranin A, INSM1, and CD56/NCAM1. However, these tumors remain diagnostically challenging because of overlapping histologic and immunohistochemical features. The transcriptional regulators ASCL1, NEUROD1, POU2F3, and YAP1 are novel NEM (nNEM) used for the subtyping of small-cell lung cancer (SCLC). Here, we assessed the immunoexpression of nNEM in 76 sinonasal malignancies, including 27 olfactory neuroblastomas (ONB), 14 small-cell neuroendocrine carcinomas (SCNEC), 2 large-cell neuroendocrine carcinomas, 12 sinonasal undifferentiated carcinomas (SNUC), 7 olfactory carcinomas (OC), 11 SWI/SNF-deficient carcinomas, and 3 neuroendocrine tumors. We correlated nNEM expression with the extent of neuroendocrine (NE) differentiation, as defined by averaged conventional NEM expression (NE-high: H-score, ≥150; NE-low: H-score, <150). Dominant NE subtypes were defined by the nNEM with the highest H-score. Coexpression of 2 nNEM with <100 H-score difference defined a codominant NE subtype. NE differentiation positively correlated with NEUROD1 and negatively with YAP1 expression (P < .0001). ONB were NE-high (96%), and all were NEUROD1-dominant/POU2F3-negative/ASCL1-negative (low)/YAP1-negative (low). In contrast to ONB, all OC were NE-low, mostly (71%) codominant subtypes, NEUROD1-low (negative) (100%, P = .0001), and YAP1 high (71%; P = .0001). Most notably, all SNUC were POU2F3-(co)dominant/NEUROD1-negative irrespective of the IDH2 mutations. Sinonasal tumors with high POU2F3 expression showed enrichment for "tuft cell carcinoma" and tuft cell signatures (P = .009). Similar to SCLC, SCNEC was heterogeneous in terms of nNEM expression comprising several molecular subtypes, including ASCL1-(co)dominant (43%) cases. All SWI/SNF-deficient carcinomas were consistently ASCL1/NEUROD1/POU2F3-negative and YAP1-positive. ASCL1/NEUROD1/POU2F3/YAP1 are useful markers in the differential diagnosis of ONB, SNUC, OC, and SWI/SNF-deficient carcinomas. Subsets of SNUC and large-cell neuroendocrine carcinomas may represent tuft cell-like carcinomas, suggesting that the tuft cell could be explored as the cell of origin for these tumors. The therapeutic vulnerabilities associated with POU2F3 expression in SCLC suggest that a similar approach might be considered for POU2F3-positive carcinomas of the sinonasal tract. Given their diagnostic and possible therapeutic relevance, nNEM have the potential to transform the way we approach the diagnosis and management of sinonasal small round epithelial/neuroepithelial malignancies.

Keywords: POU2F3; neurogenic differentiation factor 1; olfactory carcinoma; olfactory neuroblastoma; sinonasal undifferentiated carcinoma; tuft cell–like carcinoma.

PubMed Disclaimer

References

    1. Rooper LM. Proceedings of the 2023 North American Society of Head and Neck Pathology Companion Meeting, New Orleans, LA, March 12, 2023: Navigating New Developments in High Grade Sinonasal Neuroendocrine and Neuroectodermal Neoplasms. Head Neck Pathol. 2023;17:299–312. - PMC - PubMed
    1. Bishop JA TL, Loney EL. Nasal, paranasal, and skull base tumours. In: WHO Classification of Tumours Editorial Board. Head and neck tumours [Internet]. Lyon (France): International Agency for Research on Cancer; 2023. [cited 2024 May 17]. (WHO classification of tumours series, 5th ed.; vol. 9). Available from: https://tumourclassification.iarc.who.int/chapters/52.
    1. Amit M, Abdelmeguid AS, Watcherporn T. et al. Induction chemotherapy response as a guide for treatment optimization in sinonasal undifferentiated carcinoma. J Clin Oncol. 2019;37:504. - PMC - PubMed
    1. Turri-Zanoni M, Maragliano R, Battaglia P. et al. The clinicopathological spectrum of olfactory neuroblastoma and sinonasal neuroendocrine neoplasms: refinements in diagnostic criteria and impact of multimodal treatments on survival. Oral Oncol. 2017;74:21–9. - PubMed
    1. Keilin CA, VanKoevering KK, McHugh JB, McKean EL. Sinonasal neuroendocrine carcinoma: 15 years of experience at a single institution. J Neurol Surg B Skull Base. 2023;84:051–9. - PMC - PubMed

MeSH terms

LinkOut - more resources