Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan 1:289:117434.
doi: 10.1016/j.ecoenv.2024.117434. Epub 2024 Nov 29.

Effect of Acetyl tributyl citrate on bone metabolism based on network toxicology and molecular docking technology

Affiliations
Free article

Effect of Acetyl tributyl citrate on bone metabolism based on network toxicology and molecular docking technology

Xuan Lin et al. Ecotoxicol Environ Saf. .
Free article

Abstract

This study aims to elucidate the intricate effects of Acetyl tributyl citrate (ATBC) on bone metabolism, disentangling the underlying molecular mechanisms that govern the impact of environmental contaminants on disease processes. Leveraging the exhaustive exploration of databases such as ChEMBL, STITCH, GeneCards, and OMIM, we have identified a comprehensive list of 164 potential targets intimately associated with both ATBC and bone metabolism. Following rigorous refinement using the STRING platform and Cytoscape software, we pinpointed ten core targets, encompassing KDM1A, EP300, HDAC2, EHMT2, DNMT1, and several others. In-depth Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, conducted within the Metascape database, revealed that the core targets of ATBC's influence on bone metabolism are predominantly concentrated within vital signaling cascades, including thyroid hormone signaling, FOXO signaling, glucagon signaling, AMPK signaling, insulin signaling, adipocytokine signaling, and Notch signaling pathways. Additionally, molecular docking simulations performed with AutoDock software confirmed the robust binding interactions between ATBC and these core targets, reinforcing our understanding of their interactions. To explore the cellular impact of ATBC, we performed in vitro experiments using osteoblasts (MC3T3-E1) exposed to relevant concentrations. Our findings revealed that low-dose ATBC (100 μM) significantly impaired cell proliferation and migration. Concurrently, we observed a downregulation in the transcriptional expression of key epigenetic regulators (KDM1A, EP300, HDAC2), suggesting that ATBC can disrupt bone metabolism at the cellular level. Collectively, our findings provide a theoretical scaffold for comprehending the intricate molecular mechanisms mediating ATBC's effects on bone metabolism, and paves the way for the development of preventive and therapeutic strategies against orthopedic disorders that may arise from exposure to plastic products containing ATBC or excessive ATBC environments.

Keywords: ATBC; Bone metabolism; Molecular docking; Network toxicology.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Substances

LinkOut - more resources