Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec;44(12):5231-5240.
doi: 10.21873/anticanres.17351.

MRTX1719, an MTA-cooperative PRMT5 Inhibitor, Induces Cell Cycle Arrest and Synergizes With Oxaliplatin and Gemcitabine for Enhanced Anticancer Effects

Affiliations

MRTX1719, an MTA-cooperative PRMT5 Inhibitor, Induces Cell Cycle Arrest and Synergizes With Oxaliplatin and Gemcitabine for Enhanced Anticancer Effects

Toshihiro Soeta et al. Anticancer Res. 2024 Dec.

Abstract

Background/aim: MRTX1719 is a novel protein arginine methyltransferase 5 (PRMT5) inhibitor that targets the PRMT5-5'-Methylthioadenosine (MTA) complex called MTA-cooperative PRMT5 inhibitor. MRTX1719 acts specifically on methylthioadenosine phosphorylase (MTAP)-deficient cancer cells; however, its mechanism of action remains unclear. This study aimed to clarify the effects of MRTX1719 on the cell cycle and its synergistic effects with other anticancer drugs.

Materials and methods: A cell cycle assay was conducted using fluorescence-activated cell sorting to examine the correlation between PRMT5 activity and cells in the G0/G1 phase. The synergistic effects of MRTX1719 and anticancer drugs were evaluated using the Combination Index (CI) and Bliss synergy score (BSS). The synergistic effect was also evaluated by knocking down the endogenous expression of MTAP in HCT116 cells with high MTAP expression.

Results: The cell cycle assay showed that the population of cells with reduced PRMT5 activity increased, and the administration of MRTX1719, an MTAP inhibitor, increased the population of cells in the G0/G1 phase. In the synergistic effect assay, oxaliplatin and gemcitabine demonstrated a CI <1 and a BSS >0, indicating a synergistic effect when administered alongside MRTX1719. MTAP knockdown also resulted in <1 in CI and >0 in BSS after the administration of oxaliplatin or gemcitabine with MRTX1719.

Conclusion: MRTX1719 reduces PRMT5 activity, leading to cell cycle arrest by increasing the proportion of cells in the G0/G1 phase. Moreover, MRTX1719 exhibits synergistic anticancer effects with oxaliplatin and gemcitabine in MTAP-deficient cancer cells.

Keywords: MRTX1719; PRMT5; synergistic anticancer effect.

PubMed Disclaimer

MeSH terms

LinkOut - more resources