Conceptualising ecology to support more theory-driven research
- PMID: 39627972
- DOI: 10.1111/1365-2656.14206
Conceptualising ecology to support more theory-driven research
Keywords: AI; concept; ecology; remote sensing; theory.
References
REFERENCES
-
- Asbjørnsen, E. J., Sæther, B.‐E., Linnell, J. D. C., Engen, S., Andersen, R., & Bretten, T. (2005). Predicting the growth of a small introduced muskox population using population prediction intervals. The Journal of Animal Ecology, 74(4), 612–618.
-
- Benton, T. G., Cameron, T. C., & Grant, A. (2004). Population responses to perturbations: Predictions and responses from laboratory mite populations. The Journal of Animal Ecology, 73(5), 983–995.
-
- Burgos, T., Fedriani, J. M., Escribano‐Ávila, G., Seoane, J., Hernández‐Hernández, J., & Virgós, E. (2022). Predation risk can modify the foraging behaviour of frugivorous carnivores: Implications of rewilding apex predators for plant‐animal mutualisms. The Journal of Animal Ecology, 91(5), 1024–1035.
-
- Clements, F. E. (1916). Plant succession: Analysis development vegetation. Carnegie Institution Washington Publication Sciences, 242, 1–512.
-
- Costa‐Pereira, R., Rudolf, V. H. W., Souza, F. L., & Araújo, M. S. (2018). Drivers of individual niche variation in coexisting species. The Journal of Animal Ecology, 87(5), 1452–1464.
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
