Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024;125(12):785-789.
doi: 10.4149/BLL_2024_120.

Computational neuroscience as a tool for studying neurons

Computational neuroscience as a tool for studying neurons

Michal Sabo et al. Bratisl Lek Listy. 2024.

Abstract

Objectives: Computational neuroscience uses a neuron model to investigate the behavior of a neuron under different stimuli e.g. magnetic field. The aim of the study is to investigate the effect of conductivity change of sodium (Na+) and potassium (K+) ion channels on the generation and course of action potential, excitability and firing rate of neuron.

Methods: HHSim (Hodgkin-Huxley) graphical simulator was used for investigation of generation and firing rate of action potential (AP) and investigation of neuronal excitability.

Results: Na+ channel downregulation of conductance reveals a decrease of AP amplitude, and upregulation an increase of amplitude. Higher conductance of Na+ channel leads to higher firing rate from the value 53 HZ to 66 Hz. K+ channel downregulation of conductance reveals an increase of AP amplitude. Lower conductance of K+ channel leads to higher firing rate from the value 62 HZ to 68 Hz. K+ channel upregulation of conductance shows a decrease of AP amplitude.

Conclusion: From the results it can be drawn that effect of conductivity change as a result of magnetic field is significant and can leads to change of neurons. uman brain cultures, often termed "glia-like" cells (Tab. 4, Fig. 6, Ref. 21).

Keywords: action potential magnetic field.; conductance; ion channels.

PubMed Disclaimer