Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jan 16;96(2):177-183.
doi: 10.1136/jnnp-2024-334545.

Functional pathology of neuroleptic-induced dystonia based on the striatal striosome-matrix dopamine system in humans

Affiliations
Review

Functional pathology of neuroleptic-induced dystonia based on the striatal striosome-matrix dopamine system in humans

Satoshi Goto. J Neurol Neurosurg Psychiatry. .

Abstract

Neuroleptic-induced dystonia is a source of great concern in clinical practice because of its iatrogenic nature which can potentially lead to life-threatening conditions. Since all neuroleptics (antipsychotics) share the ability to block the dopamine D2-type receptors (D2Rs) that are highly enriched in the striatum, this drug-induced dystonia is thought to be caused by decreased striatal D2R activity. However, how associations of striatal D2R inactivation with dystonia are formed remains elusive.A growing body of evidence suggests that imbalanced activities between D1R-expressing medium spiny neurons and D2R-expressing medium spiny neurons (D1-MSNs and D2-MSNs) in the striatal striosome-matrix system underlie the pathophysiology of various basal ganglia disorders including dystonia. Given the specificity of the striatal dopamine D1 system in 'humans', this article highlights the striatal striosome hypothesis in causing 'repetitive' and 'stereotyped' motor symptoms which are key clinical features of dystonia. It is suggested that exposure to neuroleptics may reduce striosomal D1-MSN activity and thereby cause dystonia symptoms. This may occur through an increase in the striatal cholinergic activity and the collateral inhibitory action of D2-MSNs onto neighbouring D1-MSNs within the striosome subfields. The article proposes a functional pathology of the striosome-matrix dopamine system for neuroleptic-induced acute dystonia or neuroleptic-withdrawal dystonia. A rationale for the effectiveness of dopaminergic or cholinergic pharmacotherapy is also provided for treating dystonias. This narrative review covers various aspects of the relevant field and provides a detailed discussion of the mechanisms of neuroleptic-induced dystonia.

Keywords: DYSTONIA; MOVEMENT DISORDERS; NEUROANATOMY; PSYCHOLOGY.

PubMed Disclaimer

Conflict of interest statement

Competing interests: None declared.

Similar articles

Cited by

MeSH terms

LinkOut - more resources