Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Nov 20:15:1497836.
doi: 10.3389/fphys.2024.1497836. eCollection 2024.

Basic research and opportunities for translational advancement in the field of mammalian ∼12-hour ultradian chronobiology

Affiliations
Review

Basic research and opportunities for translational advancement in the field of mammalian ∼12-hour ultradian chronobiology

William Dion et al. Front Physiol. .

Abstract

Repetitive variations, such as oscillation, are ubiquitous in biology. In this mini review, we present a general summary of the ∼24 h circadian clock and provide a fundamental overview of another biological timekeeper that maintains ∼12 h oscillations. This ∼12 h oscillator is proposed to function independently of the circadian clock to regulate ultradian biological rhythms relevant to both protein homeostasis and liver health. Recent studies exploring these ∼12 h rhythms in humans are discussed, followed by our proposal that mammary gland physiology represents a promising area for further research. We conclude by highlighting potential translational applications in ∼12 h ultradian chronobiology.

Keywords: NAFLD/MAFLD; XBP1s; circadian rhythm; nuclear speckles; proteostasis; ultradian rhythm; unfolded protein response.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

FIGURE 1
FIGURE 1
Ultradian biological rhythms of nuclear speckle liquid-liquid phase separation dynamics and proteostasis. (A) Nuclear speckle morphology (indicated by SC35 signal) in mouse liver at different timepoints. Normal nuclear speckle morphologies alternate between punctate (CT2 and CT14) and diffuse (CT8 and CT20). Panel taken from Figure 1A of Dion et al., 2022, © The Authors, some rights reserved; exclusive licensee AAAS. Distributed under a Creative Commons Attribution License 4.0 (CC BY) https://creativecommons.org/licenses/by/4.0/. (B) Characteristics associated with different nuclear speckle morphologies (nuclear speckle (NS), liquid-liquid phase separation (LLPS)). (C) Our lake analogy shows full and drying lakes representing normally occurring nuclear speckle morphologies and green shrubs which represent chromatin. The changes in the water’s distance from the green shrubs could be understood as how nuclear speckles' proximity to chromatin normally changes over time. Image created with BioRender.com.
FIGURE 2
FIGURE 2
Post hoc analysis of the human milk fat globule temporal transcriptome. Data from the published study are available through the NCBI Gene Expression Omnibus, identifier GSE12669 (Maningat et al., 2009). (A) Total cycling genes with p values less than 0.05 for corresponding periods as determined with RAIN (Thaben and Westermark, 2014). (B) Temporal expression profiles of individual genes previously shown to have ultradian rhythms (Zhu et al., 2017; Pan et al., 2020).

References

    1. Acosta-Rodriguez V., Rijo-Ferreira F., Izumo M., Xu P., Wight-Carter M., Green C. B., et al. (2022). Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. Science 376 (6598), 1192–1202. 10.1126/science.abk0297 - DOI - PMC - PubMed
    1. Alexander K. A., Coté A., Nguyen S. C., Zhang L., Gholamalamdari O., Agudelo-Garcia P., et al. (2021). p53 mediates target gene association with nuclear speckles for amplified RNA expression. Mol. Cell 81 (8), 1666–1681.e6. 10.1016/j.molcel.2021.03.006 - DOI - PMC - PubMed
    1. Anderson S. M., Rudolph M. C., McManaman J. L., Neville M. C. (2007). Key stages in mammary gland development. Secretory activation in the mammary gland: it’s not just about milk protein synthesis. Breast Cancer Res. 9 (204), 204–214. 10.1186/bcr1653 - DOI - PMC - PubMed
    1. Banani S. F., Lee H. O., Hyman A. A., Rosen M. K. (2017). Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18 (5), 285–298. 10.1038/nrm.2017.7 - DOI - PMC - PubMed
    1. Bhat P., Chow A., Emert B., Ettlin O., Quinodoz S. A., Strehle M., et al. (2024). Genome organization around nuclear speckles drives mRNA splicing efficiency. Nature 629 (8014), 1165–1173. 10.1038/s41586-024-07429-6 - DOI - PMC - PubMed

LinkOut - more resources