High-sensitivity computational miniaturized terahertz spectrometer using a plasmonic filter array and a modified multilayer residual CNN
- PMID: 39634719
- PMCID: PMC11501244
- DOI: 10.1515/nanoph-2023-0581
High-sensitivity computational miniaturized terahertz spectrometer using a plasmonic filter array and a modified multilayer residual CNN
Abstract
Spectrometer miniaturization is desired for handheld and portable applications, yet nearly no miniaturized spectrometer is reported operating within terahertz (THz) waveband. Computational strategy, which can acquire incident spectral information through encoding and decoding it using optical devices and reconstruction algorithms, respectively, is widely employed in spectrometer miniaturization as artificial intelligence emerges. We demonstrate a computational miniaturized THz spectrometer, where a plasmonic filter array tailors the spectral response of a blocked-impurity-band detector. Besides, an adaptive deep-learning algorithm is proposed for spectral reconstructions with curbing the negative impact from the optical property of the filter array. Our spectrometer achieves modest spectral resolution (2.3 cm-1) compared with visible and infrared miniaturized spectrometers, outstanding sensitivity (e.g., signal-to-noise ratio, 6.4E6: 1) superior to common benchtop THz spectrometers. The combination of THz optical devices and reconstruction algorithms provides a route toward THz spectrometer miniaturization, and further extends the applicable sphere of the THz spectroscopy technique.
Keywords: adaptive deep-learning algorithm; computational miniaturized terahertz spectrometer; plasmonic filters.
© 2023 the author(s), published by De Gruyter, Berlin/Boston.
Conflict of interest statement
Conflict of interest: Authors state no conflict of interest.
Figures





Similar articles
-
Miniaturized infrared spectrometer based on the tunable graphene plasmonic filter.Opt Express. 2023 Jan 16;31(2):1615-1628. doi: 10.1364/OE.476606. Opt Express. 2023. PMID: 36785193
-
Miniaturized on-chip spectrometer enabled by electrochromic modulation.Light Sci Appl. 2024 Sep 29;13(1):278. doi: 10.1038/s41377-024-01638-4. Light Sci Appl. 2024. PMID: 39341832 Free PMC article.
-
High-sensitivity miniaturized spectrometers using photonic crystal slab filters.Opt Lett. 2024 Oct 1;49(19):5483-5486. doi: 10.1364/OL.536720. Opt Lett. 2024. PMID: 39352987
-
Miniaturized NIR Spectroscopy in Food Analysis and Quality Control: Promises, Challenges, and Perspectives.Foods. 2022 May 18;11(10):1465. doi: 10.3390/foods11101465. Foods. 2022. PMID: 35627034 Free PMC article. Review.
-
Advances in Miniaturized Computational Spectrometers.Adv Sci (Weinh). 2024 Dec;11(47):e2404448. doi: 10.1002/advs.202404448. Epub 2024 Oct 30. Adv Sci (Weinh). 2024. PMID: 39477813 Free PMC article. Review.
References
-
- Bacon C. P., Mattley Y., DeFrece R. Miniature spectroscopic instrumentation: applications to biology and chemistry. Rev. Sci. Instrum. . 2004;75:1–16. doi: 10.1063/1.1633025. - DOI
-
- Cadusch J. J., Meng J. J., Craig B. J., Shrestha V. R., Crozier K. B. Visible to long-wave infrared chip-scale spectrometers based on photodetectors with tailored responsivities and multispectral filters. Nanophotonics . 2020;9:3197–3208. doi: 10.1515/nanoph-2020-0114. - DOI
-
- Xu Y., Zhang X., Fu Y., Liu Y. Interfacing photonics with artificial intelligence: an innovative design strategy for photonic structures and devices based on artificial neural networks. Photon. Res. . 2021;9:B135–B152. doi: 10.1364/prj.417693. - DOI
LinkOut - more resources
Full Text Sources