Inhibition of Angiopoietin-2 rescues sporadic brain arteriovenous malformations by reducing pericyte loss
- PMID: 39636449
- DOI: 10.1007/s10456-024-09957-1
Inhibition of Angiopoietin-2 rescues sporadic brain arteriovenous malformations by reducing pericyte loss
Abstract
Brain arteriovenous malformations (bAVMs) are a major cause of hemorrhagic stroke in children and young adults. These lesions are thought to result from somatic KRAS/BRAF mutations in brain endothelial cells (bECs). In this study, we introduce a new bAVM model by inducing a brain endothelial-specific BrafV600E mutation using the Slc1o1c1(BAC)-CreER driver line. The pathological characteristics of this model resemble human bAVMs, including dilated and hyperpermeable vessels, as well as parenchymal hemorrhage. We observed that these lesions showed a typical reduction in pericyte coverage and disruption of the pericyte-endothelial cell connection. Additionally, we found that ANGPT2 levels were significantly increased in the endothelium of bAVM lesions, which may be a critical factor in the pericyte deficits of the malformed vessels. Treatment with an ANGPT2 neutralizing antibody confirmed that blocking ANGPT2 can restore pericyte density in bAVM lesions, improve pericyte coverage around microvessels, enhance tight junction protein coverage related to endothelial cells, and normalize endothelial barrier function. In summary, our findings suggest that increased ANGPT2 expression in endothelial cells with the BrafV600E mutation is a key factor in pericyte deficiencies in bAVMs, highlighting the potential effectiveness of anti-ANGPT2 therapy in treating bAVMs.
Keywords: BRAF; ANGPT-2; Endothelial cell; Pericytes; Somatic mutation.
© 2024. The Author(s), under exclusive licence to Springer Nature B.V.
Conflict of interest statement
Declarations. Competing interests: The authors declare no competing interests.
References
-
- Solomon RA, Connolly ES Jr (2017) Arteriovenous malformations of the brain. N Engl J Med 376(19):1859–1866. https://doi.org/10.1056/NEJMra1607407 - DOI - PubMed
-
- Stapf C, Labovitz DL, Sciacca RR, Mast H, Mohr JP, Sacco RL (2002) Incidence of adult brain arteriovenous malformation hemorrhage in a prospective population-based stroke survey. Cerebrovasc Dis 13(1):43–46. https://doi.org/10.1159/000047745 - DOI - PubMed
-
- van Beijnum J, van der Worp HB, Buis DR, Al-Shahi Salman R, Kappelle LJ, Rinkel GJ, van der Sprenkel JW, Vandertop WP, Algra A, Klijn CJ (2011) Treatment of brain arteriovenous malformations: a systematic review and meta-analysis. JAMA 306(18):2011–2019. https://doi.org/10.1001/jama.2011.1632 - DOI - PubMed
-
- Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’Farrell FM, Buchan AM, Lauritzen M, Attwell D (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508(7494):55–60. https://doi.org/10.1038/nature13165 - DOI - PubMed - PMC
-
- Crouch EE, Bhaduri A, Andrews MG, Cebrian-Silla A, Diafos LN, Birrueta JO, Wedderburn-Pugh K, Valenzuela EJ, Bennett NK, Eze UC, Sandoval-Espinosa C, Chen J, Mora C, Ross JM, Howard CE, Gonzalez-Granero S, Lozano JF, Vento M, Haeussler M, Paredes MF, Nakamura K, Garcia-Verdugo JM, Alvarez-Buylla A, Kriegstein AR, Huang EJ (2022) Ensembles of endothelial and mural cells promote angiogenesis in prenatal human brain. Cell 185(20):3753. https://doi.org/10.1016/j.cell.2022.09.004 - DOI - PubMed - PMC
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
