Programming liquid crystal elastomers for multistep ambidirectional deformability
- PMID: 39636998
- DOI: 10.1126/science.adq6434
Programming liquid crystal elastomers for multistep ambidirectional deformability
Abstract
Ambidirectionality, which is the ability of structural elements to move beyond a reference state in two opposite directions, is common in nature. However, conventional soft materials are typically limited to a single, unidirectional deformation unless complex hybrid constructs are used. We exploited the combination of mesogen self-assembly, polymer chain elasticity, and polymerization-induced stress to design liquid crystalline elastomers that exhibit two mesophases: chevron smectic C (cSmC) and smectic A (SmA). Inducing the cSmC-SmA-isotropic phase transition led to an unusual inversion of the strain field in the microstructure, resulting in opposite deformation modes (e.g., consecutive shrinkage or expansion and right-handed or left-handed twisting and tilting in opposite directions) and high-frequency nonmonotonic oscillations. This ambidirectional movement is scalable and can be used to generate Gaussian transformations at the macroscale.
LinkOut - more resources
Full Text Sources
