Unveiling the potential of step-scheme and Type II photocatalysts in dinitrogen reduction to ammonia
- PMID: 39637537
- DOI: 10.1016/j.scitotenv.2024.177903
Unveiling the potential of step-scheme and Type II photocatalysts in dinitrogen reduction to ammonia
Abstract
Innovative photocatalytic systems designed to enhance efficiency of nitrogen fixation processes, specifically focusing on sustainable ammonia (NH3) production strategies via dinitrogen (N2) reduction into ammonia (NH3). This process is critical for sustainable agriculture and energy production. To improve photocatalyst activity, catalyst stability and reusability, reduction efficiency due to electron/hole recombination, and light-absorption efficiency has drawn extensive attention. Herein, a broad range of research progress and comprehensive overview of step-scheme/type-II heterojunctions focusing on dinitrogen (N2) reduction are reviewed with focus on general synthesis, characterization by their unique charge separation mechanisms that improve light absorption and electron-hole pair utilization. The review highlights recent advancements in material design, which have shown promising results in enhancing photocatalytic activity under visible light irradiation. A significant portion of the review delves into the underlying mechanisms which these heterojunctions operate. Despite the promising literature results, several challenges facing this field, such as scalability, stability of photocatalysts, and environmental impact under operational conditions were also discussed. In summary, this review provides valuable insights into the potential of step-scheme/type-II photocatalysts for dinitrogen reduction to ammonia. The need for interdisciplinary approaches to overcome existing challenges such as incorporation of piezoelectric biomaterials and unlocking the full potential of these materials in addressing global nitrogen demands sustainably are highlighted, outlining future directions for further research and innovations.
Keywords: Ammonia production; Catalytic efficiency; Charge transfer mechanism; Dinitrogen reduction; Heterojunctions; Photocatalysis; Solar driven catalysis; Solar-to-chemical conversion; Step-scheme photocatalysts; Type-II photocatalyst.
Copyright © 2024 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
LinkOut - more resources
Full Text Sources
