Deep learning biomarker of chronometric and biological ischemic stroke lesion age from unenhanced CT
- PMID: 39643604
- PMCID: PMC11624201
- DOI: 10.1038/s41746-024-01325-z
Deep learning biomarker of chronometric and biological ischemic stroke lesion age from unenhanced CT
Abstract
Estimating progression of acute ischemic brain lesions - or biological lesion age - holds huge practical importance for hyperacute stroke management. The current best method for determining lesion age from non-contrast computerised tomography (NCCT), measures Relative Intensity (RI), termed Net Water Uptake (NWU). We optimised lesion age estimation from NCCT using a convolutional neural network - radiomics (CNN-R) model trained upon chronometric lesion age (Onset Time to Scan: OTS), while validating against chronometric and biological lesion age in external datasets (N = 1945). Coefficients of determination (R2) for OTS prediction, using CNN-R, and RI models were 0.58 and 0.32 respectively; while CNN-R estimated OTS showed stronger associations with ischemic core:penumbra ratio, than RI and chronometric, OTS (ρ2 = 0.37, 0.19, 0.11); and with early lesion expansion (regression coefficients >2x for CNN-R versus others) (all comparisons: p < 0.05). Concluding, deep-learning analytics of NCCT lesions is approximately twice as accurate as NWU for estimating chronometric and biological lesion ages.
© 2024. The Author(s).
Conflict of interest statement
Competing interests: The authors declare no competing interests.
Figures





Similar articles
-
Net water uptake, a neuroimaging marker of early brain edema, as a predictor of symptomatic intracranial hemorrhage after acute ischemic stroke.Front Neurol. 2022 Jul 27;13:903263. doi: 10.3389/fneur.2022.903263. eCollection 2022. Front Neurol. 2022. PMID: 35968283 Free PMC article.
-
ASPECTS-based net water uptake outperforms target mismatch for outcome prediction in patients with acute ischemic stroke and late therapeutic window.Eur Radiol. 2023 Dec;33(12):9130-9138. doi: 10.1007/s00330-023-09965-7. Epub 2023 Jul 27. Eur Radiol. 2023. PMID: 37498384
-
Hybrid CNN-Transformer Network With Circular Feature Interaction for Acute Ischemic Stroke Lesion Segmentation on Non-Contrast CT Scans.IEEE Trans Med Imaging. 2024 Jun;43(6):2303-2316. doi: 10.1109/TMI.2024.3362879. Epub 2024 Jun 3. IEEE Trans Med Imaging. 2024. PMID: 38319756
-
Automatic identification of early ischemic lesions on non-contrast CT with deep learning approach.Sci Rep. 2022 Oct 27;12(1):18054. doi: 10.1038/s41598-022-22939-x. Sci Rep. 2022. PMID: 36302876 Free PMC article.
-
Review of net water uptake in the management of acute ischemic stroke.Eur Radiol. 2022 Aug;32(8):5517-5524. doi: 10.1007/s00330-022-08658-x. Epub 2022 Mar 12. Eur Radiol. 2022. PMID: 35278122 Review.
References
-
- Nagaraja, N., Forder, J. R., Warach, S. & Merino, J. G. Reversible diffusion-weighted imaging lesions in acute ischemic stroke: A systematic review. Neurology94, 571–587 (2020). - PubMed
-
- Ballout, A. A., Oh, S. Y., Huang, B., Patsalides, A. & Libman, R. B. Ghost infarct core: A systematic review of the frequency, magnitude, and variables of CT perfusion overestimation. J. Neuroimaging33, 716–724 (2023). - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources