Light-induced conductivity changes in purple membrane suspensions
- PMID: 39648
- DOI: 10.1007/BF02426665
Light-induced conductivity changes in purple membrane suspensions
Abstract
Small light-induced changes in the conductivity of light-adapted purple membrane suspended in strong electrolyte solutions were detected. The method used involved modulated light and a phase sensitive detector and it allowed us to detect accurately changes as small as 0.0001% in the conductivity of the suspension. The light-induced conductivity changes turned out to be composed of at least two different event: a small fast increase in conductivity (tau approximately 2 ms) followed by a slower and larger decrease in this parameter (tau = 70 ms-80 ms). The effects of pH and temperature on these changes were studied. Both events reached maximal values around neutral pH and approached zero at both high and low pH's. Heating the suspension decreased the photoconductivity change and Arrhenius plots of the data showed breaks around 31 degrees C. It is suggested that the conductivity changes reflect changes in the surface charge of the membrane and can be used to follow the kinetics of the conformational changes occurring in the system.
Similar articles
-
Light-induced conductivity changes of purple membrane suspensions in strong electrolytes.J Bioenerg Biomembr. 1988 Oct;20(5):585-602. doi: 10.1007/BF00768921. J Bioenerg Biomembr. 1988. PMID: 3215903
-
The direction of light-induced pH changes in purple membrane suspensions. Influence of pH and temperature.FEBS Lett. 1977 Sep 15;81(2):238-42. doi: 10.1016/0014-5793(77)80526-7. FEBS Lett. 1977. PMID: 21811 No abstract available.
-
Energetics and chronology of phototransients in the light response of the purple membrane of Halobacterium halobium.Biochim Biophys Acta. 1976 Jun 8;430(3):454-8. doi: 10.1016/0005-2728(76)90021-9. Biochim Biophys Acta. 1976. PMID: 938642
-
Surface charge changes in purple membranes and the photoreaction cycle of bacteriorhodopsin.Proc Natl Acad Sci U S A. 1980 Aug;77(8):4707-11. doi: 10.1073/pnas.77.8.4707. Proc Natl Acad Sci U S A. 1980. PMID: 6254038 Free PMC article.
-
Bacteriorhodopsin and the purple membrane of halobacteria.Biochim Biophys Acta. 1979 Mar 14;505(3-4):215-78. doi: 10.1016/0304-4173(79)90006-5. Biochim Biophys Acta. 1979. PMID: 35226 Review. No abstract available.
Cited by
-
Light-induced conductivity changes of purple membrane suspensions in strong electrolytes.J Bioenerg Biomembr. 1988 Oct;20(5):585-602. doi: 10.1007/BF00768921. J Bioenerg Biomembr. 1988. PMID: 3215903
-
Large transient nonproton ion movements in purple membrane suspensions are abolished by solubilization in Triton X-100.Biophys J. 1986 Sep;50(3):405-15. doi: 10.1016/S0006-3495(86)83476-2. Biophys J. 1986. PMID: 3019444 Free PMC article.
-
Abrupt onset of large scale nonproton ion release in purple membranes caused by increasing pH or ionic strength.Biophys J. 1987 Jun;51(6):875-81. doi: 10.1016/S0006-3495(87)83415-X. Biophys J. 1987. PMID: 3607209 Free PMC article.
-
Photoacoustic photocalorimetry and spectroscopy of Halobacterium halobium purple membranes.Biophys J. 1982 Feb;37(2):405-15. doi: 10.1016/S0006-3495(82)84686-9. Biophys J. 1982. PMID: 7059648 Free PMC article.
-
Nonproton ion release by purple membranes exhibits cooperativity as shown by determination of the optical cross-section.Biophys J. 1988 Aug;54(2):197-204. doi: 10.1016/S0006-3495(88)82948-5. Biophys J. 1988. PMID: 3207821 Free PMC article.