Catalyst Protonation Changes the Mechanism of Electrochemical Hydride Transfer to CO2
- PMID: 39649992
- PMCID: PMC11621949
- DOI: 10.1021/acsorginorgau.4c00041
Catalyst Protonation Changes the Mechanism of Electrochemical Hydride Transfer to CO2
Abstract
It is well-known that addition of a cationic functional group to a molecule lowers the necessary applied potential for an electron transfer (ET) event. This report studies the effect of a proton (a cation) on the mechanism of electrochemically driven hydride transfer (HT) catalysis. Protonated, air-stable [HFe4N(triethyl phosphine (PEt3))4(CO)8] (H4) was synthesized by reaction of PEt3 with [Fe4N(CO)12]- (A -) in tetrahydrofuran, with addition of benzoic acid to the reaction mixture. The reduction potential of H4 is -1.70 V vs SCE which is 350 mV anodic of the reduction potential for 4 -. Reactivity studies are consistent with HT to CO2 or to H+ (carbonic acid), as the chemical event following ET, when the electrocatalysis is performed under 1 atm of CO2 or N2, respectively. Taken together, the chemical and electrochemical studies of mechanism suggest an ECEC mechanism for the reduction of CO2 to formate or H+ to H2, promoted by H4. This stands in contrast to an ET, two chemical steps, followed by an ET (ECCE) mechanism that is promoted by the less electron rich catalyst A -, since A - must be reduced to A 2- before HA - can be accessed.
© 2024 The Authors. Published by American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures







References
-
- Nitopi S. A.; Bertheussen E.; Scott S. B.; Liu X.; Engstfeld A. K.; Horch S.; Seger B.; Stephens I. E. L.; Chan K.; Hahn C.; Nørskov J. K.; Jaramillo T. F.; Chorkendorff I. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chem. Rev. 2019, 119, 7610–7672. 10.1021/acs.chemrev.8b00705. - DOI - PubMed
-
- Fukuzumi S. Production of liquid solar fuels and their use in fuel cells. Joule 2017, 1, 689–738. 10.1016/j.joule.2017.07.007. - DOI
-
- Ross M. B.; De Luna P.; Li Y.; Dinh C.-T.; Kim D.; Yang P.; Sargent E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658. 10.1038/s41929-019-0306-7. - DOI
-
- Appel A. M.; Bercaw J. E.; Bocarsly A. B.; Dobbek H.; DuBois D. L.; Dupuis M.; Ferry J. G.; Fujita E.; Hille R.; Kenis P. J. A.; Kerfeld C. A.; Morris R. H.; Peden C. H. F.; Portis A. R.; Ragsdale S. W.; Rauchfuss T. B.; Reek J. N. H.; Seefeldt L. C.; Thauer R. K.; Waldrop G. L. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 2013, 113, 6621–6658. 10.1021/cr300463y. - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources
Research Materials