Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2024 Nov 28:2024.11.25.625301.
doi: 10.1101/2024.11.25.625301.

Structure and organization of full-length Epidermal Growth Factor Receptor in extracellular vesicles by cryo-electron tomography

Structure and organization of full-length Epidermal Growth Factor Receptor in extracellular vesicles by cryo-electron tomography

Monica Gonzalez-Magaldi et al. bioRxiv. .

Update in

Abstract

We report here transport of the Epidermal Growth Factor Receptor (EGFR), Insulin Receptor, 7-pass transmembrane receptor Smoothened, and 13-pass Sodium-iodide symporter to extracellular vesicles (EVs) for structural and functional studies. Mass spectrometry confirmed the transported proteins as the most abundant in EV membranes, and the presence of many receptor-interacting proteins demonstrates the utility of EVs for characterizing membrane protein interactomes. Cryo-electron tomography of EGFR-containing EVs reveals that EGFR forms clusters in the presence of EGF with a ∼3 nm gap between the inner membrane and cytoplasmic density. EGFR extracellular regions do not form regular arrays, suggesting that clustering is mediated by the intracellular region. Subtomogram averaging of the EGFR extracellular region (ECR) yielded a 15 Å map into which the crystal structure of the ligand-bound EGFR ECR dimer fits well. These findings refine our understanding of EGFR activation, clustering, and signaling, and they establish EVs as a versatile platform for structural and functional characterization of human membrane proteins in a native-like environment.

Significance statement: Atomic or near-atomic resolution structural studies of proteins embedded in cell membranes have proven challenging. We show that transporting integral membrane proteins to cell-derived extracellular vesicles enables structural and functional studies of human membrane proteins in a native membrane environment. We have used this approach to visualize an active form of full-length Epidermal Growth Factor Receptor (EGFR) and show that it forms clusters in the membrane and projects its cytoplasmic signaling domains ∼3 nm away from the membrane surface. EGFR is essential for normal development, but abnormal EGFR activity is associated with several human cancers and is the target of many anticancer therapies. Our studies refine current models of how ligand binding to EGFR transmits signals across cell membranes.

PubMed Disclaimer

Similar articles

Publication types