Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan;51(1):14-28.
doi: 10.1080/03639045.2024.2439930. Epub 2024 Dec 11.

Formulation of Morus alba extract loaded solid lipid nanoparticles: in silico, characterizations, and in vitro cytotoxicity study

Affiliations

Formulation of Morus alba extract loaded solid lipid nanoparticles: in silico, characterizations, and in vitro cytotoxicity study

Narahari N Palei et al. Drug Dev Ind Pharm. 2025 Jan.

Abstract

Objective: This study aimed to formulate Morus alba leaf extract (MAE) loaded solid lipid nanoparticles (SLNs) and investigate its cytotoxic potential using MDA-MB231 cell line.

Significance: SLNs can protect MAE from degradation, enhance cytotoxicity potential, and making them suitable for various therapeutic areas.

Methods: SLNs were developed using high-pressure homogenization method, and the formulations were optimized based on particle size, zeta potential, % entrapment efficiency (EE), and % cumulative drug release (CDR). The in vitro cytotoxic efficacy of MAE-loaded SLNs was evaluated through apoptosis assays and compared to that of free MAE.

Results: The particle size, zeta potential, % EE, and % CDR of optimized SLNs were found 116.3 nm, -26.18 mV, 89.30%, and 79.4%, respectively. MAE-loaded SLNs demonstrated significantly greater cytotoxic effects than the MAE (p < 0.05). SLNs induced less inhibition in the G0/G1 phase but showed marked inhibition in the S phase (9.7 ± 1.7%) and G2/M phase (2.2 ± 0.6%), indicating effective disruption of DNA replication and cell division, with significant cytotoxicity compared to control cells. The percentage of total apoptosis was 72.49 ± 2.7% for MAE alone and 81.46 ± 2.9% for MAE loaded SLNs, demonstrating a notably higher apoptosis rate for the SLNs formulation (p < 0.05). These findings indicated that MAE loaded SLNs significantly enhance the apoptotic and cytotoxic impact compared to MAE.

Conclusion: These results proved that MAE loaded SLNs as a promising nano carrier system to improve the therapeutic performance of MAE.

Keywords: In silico; Morus Alba; SLNs; cytotoxicity; high pressure homogenization.

PubMed Disclaimer

Similar articles

Supplementary concepts

LinkOut - more resources