Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Jan 10;260(1):242-51.

Kinetic studies of calcium and magnesium binding to troponin C

  • PMID: 3965449
Free article

Kinetic studies of calcium and magnesium binding to troponin C

S S Rosenfeld et al. J Biol Chem. .
Free article

Abstract

The kinetic mechanism of calcium binding was investigated for the high-affinity calcium-magnesium sites of troponin C (TN-C), for the C-terminal fragment containing only the high-affinity sites (TR2) and for the TN-C:TN-I (where TN-I represents the inhibitory subunit of troponin) complex. Rate constants were measured by the change in fluorescence of the proteins labeled with 4-(N-iodoacetoxyethyl-N-methyl-7-nitrobenz-2-oxa-1,3-diazole at Cys 98. Rate constants for calcium dissociation were also measured using the fluorescent calcium chelating agent quin 2. Calcium binding to TR2 at 4 degrees C is a two-step process at each binding site. (formula; see text) A first order transition (k1 = 700 s-1) follows the formation of a weakly bound collision complex (K0 = 2.5 X 10(3) M-1). The two sits of the labeled protein are distinguishable because of a 2-4-fold difference in rate constants of calcium dissociation. The kinetic evidence is consistent with additive changes in structure induced by calcium binding to two identical or nearly identical high-affinity sites. The mechanism for TN-C:TN-I is similar to TR2. TN-C gave complex kinetic behavior for calcium binding but calcium dissociation occurred with the same rate constants found for TR2. Calcium binding to the high-affinity sites of TnC can be interpreted by the same mechanism as for TR2 but an additional reaction possibly arriving from calcium binding to the low-affinity sites leads to a high-fluorescence intermediate state which is detected by the fluorophore. The interactions between the two classes of sites are interpreted by a model in which calcium binding at the high-affinity sites reverses the fluorescence change induced by calcium binding at the low-affinity sites. Magnesium binding to the calcium-magnesium sites of TR2 and TN-C occurs by the same two-step binding mechanism with a smaller value for K0 and a 5-fold larger rate constant of dissociation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources