Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan 7;64(1):203-212.
doi: 10.1021/acs.biochem.4c00521. Epub 2024 Dec 10.

How the Electron-Transfer Cascade is Maintained in Chlorophyll- d Containing Photosystem I

Affiliations

How the Electron-Transfer Cascade is Maintained in Chlorophyll- d Containing Photosystem I

Tomoyasu Noji et al. Biochemistry. .

Abstract

Photosystem I (PSI) from Acaryochloris marina utilizes chlorophyll d (Chld) with a formyl group as its primary pigment, which is more red-shifted than chlorophyll a (Chla) in PSI from Thermosynechococcus elongatus. Using the cryo-electron microscopy structure and solving the linear Poisson-Boltzmann equation, here we report the redox potential (Em) values in A. marina PSI. The Em(Chld) values at the paired chlorophyll site, [PAPB], are nearly identical to the corresponding Em(Chla) values in T. elongatus PSI, despite Chld having a 200 mV lower reduction power. The accessory chlorophyll site, A-1, in the B branch exhibits an extensive H-bond network with its ligand water molecule, contributing to Em(A-1B) being lower than Em(A-1A). The substitution of pheophytin a (Pheoa) with Chla at the electron acceptor site, A0, decreases Em(A0), resulting in an uphill electron transfer from A-1. The impact of the A-1 formyl group on Em(A0) is offset by the reorientation of the A0 ester group. It seems likely that Pheoa is necessary for A. marina PSI to maintain the overall electron-transfer cascade characteristic of PSI in its unique light environment.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

References

    1. Ishikita H.; Knapp E.-W. Redox potential of quinones in both electron transfer branches of photosystem I. J. Biol. Chem. 2003, 278, 52002–52011. 10.1074/jbc.M306434200. - DOI - PubMed
    1. Chauvet A.; Dashdorj N.; Golbeck J. H.; Johnson T. W.; Savikhin S. Spectral resolution of the primary electron acceptor A0 in photosystem I. J. Phys. Chem. B 2012, 116, 3380–3386. 10.1021/jp211246a. - DOI - PubMed
    1. Nürnberg D. J.; Morton J.; Santabarbara S.; Telfer A.; Joliot P.; Antonaru L. A.; Ruban A. V.; Cardona T.; Krausz E.; Boussac A.; Fantuzzi A.; Rutherford A. W. Photochemistry beyond the red limit in chlorophyll f–containing photosystems. Science 2018, 360, 1210–1213. 10.1126/science.aar8313. - DOI - PubMed
    1. Cardona T.; Rutherford A. W. Evolution of photochemical reaction centres: more twists?. Trends Plant Sci. 2019, 24, 1008–1021. 10.1016/j.tplants.2019.06.016. - DOI - PubMed
    1. Jordan P.; Fromme P.; Witt H. T.; Klukas O.; Saenger W.; Krauss N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 2001, 411, 909–917. 10.1038/35082000. - DOI - PubMed

Publication types

MeSH terms

Supplementary concepts

LinkOut - more resources