Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Jan;5(1):9-15.
doi: 10.1523/JNEUROSCI.05-01-00009.1985.

Reciprocal inhibition in the motor nervous system of the nematode Ascaris: direct control of ventral inhibitory motoneurons by dorsal excitatory motoneurons

Reciprocal inhibition in the motor nervous system of the nematode Ascaris: direct control of ventral inhibitory motoneurons by dorsal excitatory motoneurons

J P Walrond et al. J Neurosci. 1985 Jan.

Abstract

In previous physiological experiments (Stretton, A. O. W., R. M. Fishpool, E. Southgate, J. E. Donmoyer, J. P. Walrond, J. E. R. Moses, and I. S. Kass (1978) Proc. Natl. Acad. Sci. U. S. A. 75: 3493-3497), we have shown that the dorsal cord of the nematode Ascaris lumbricoides includes the processes of three types of dorsal excitatory (DE) motoneurons and one type of ventral inhibitory (VI) motoneuron. Ultrastructural studies have revealed that the axons of the DE motoneurons make monosynaptic contacts with the dorsal processes of VI motoneurons. In this paper, we describe a physiological preparation with which to investigate the properties of these synapses. We show that activation of a DE neuron can excite a VI neuron producing inhibition in ventral muscle cells shortly after dorsal muscle cells are excited, thus mediating reciprocity between dorsal and ventral muscles. Each VI dendrite receives input from four or five DE neurons; activation of any one of these DE neurons is sufficient to activate the VI neuron.

PubMed Disclaimer

Publication types

LinkOut - more resources