The transcription factor VvMYB44-1 plays a role in reducing grapevine anthocyanin biosynthesis at high temperature
- PMID: 39661410
- DOI: 10.1093/plphys/kiae657
The transcription factor VvMYB44-1 plays a role in reducing grapevine anthocyanin biosynthesis at high temperature
Abstract
High temperature reduces anthocyanin accumulation in various horticultural plants. However, the molecular mechanisms underlying the high-temperature-induced reduction of anthocyanin in grape (Vitis vinifera) remain poorly understood. In this study, VvMYB44-1 was identified as a transcriptional repressor of anthocyanin biosynthesis in grape berries, and its gene expression was strongly induced by high-temperature treatment. Overexpression of VvMYB44-1 inhibited anthocyanin accumulation in both grape berries and tobacco (Nicotiana tabacum) by repressing the transcription of the anthocyanin biosynthesis genes dihydroflavonol-4-reductase (VvDFR) and UDP-glucose flavonoid-3-O-glucosyltransferase (VvUFGT). Furthermore, the interaction between VvMYB44-1 and VvWDR2 competitively inhibited the formation of the MYB-bHLH-WD40 (MBW) activation complex and weakened the transcriptional activity of the complex, thereby decreasing anthocyanin accumulation. Additionally, VvMYB44-1 facilitated cytokinin (CK) accumulation by upregulating the expression of the CK synthesis gene lonely guy 8 (VvLOG8) and inhibiting the CK degradation gene CK oxidase 4(VvCKX4), thus contributing to CK-mediated anthocyanin inhibition in grape berries. Moreover, the inhibitory effect of VvMYB44-1 on anthocyanin biosynthesis and its downstream target genes was weakened with the deletion of the ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif, indicating that the EAR motif is indispensable for the inhibitory effect of VvMYB44-1 on anthocyanin biosynthesis in grapes. These results provide insights into the regulatory network of VvMYB44-1 in high-temperature-mediated anthocyanin biosynthesis in grapes.
© The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.
Conflict of interest statement
Conflict of interest statement. The authors declare that they have no conflict of interests.
MeSH terms
Substances
Grants and funding
- 32272647/National Natural Science Foundation of China (NSFC)
- 2023TZXD015/Key Research and Development Plan of Shandong Province
- 2023TSGC0491/Science and Technology Small and Medium-sized Enterprise Innovation Ability Enhancement Project in Shandong Province
- 23-2-8-xdny-4-nsh/Science-Technology Benefiting People Project of Qingdao
LinkOut - more resources
Full Text Sources
Research Materials
