UNC-10/SYD-2 links kinesin-3 to RAB-3-containing vesicles in the absence of the motor's PH domain
- PMID: 39662532
- DOI: 10.1016/j.nbd.2024.106766
UNC-10/SYD-2 links kinesin-3 to RAB-3-containing vesicles in the absence of the motor's PH domain
Abstract
Kinesin-3 KIF1A (UNC-104 in C. elegans) is the major axonal transporter of synaptic vesicles and mutations in this molecular motor are linked to KIF1A-associated neurological disorders (KAND), encompassing Charcot-Marie-Tooth disease, amyotrophic lateral sclerosis and hereditary spastic paraplegia. UNC-104 binds to lipid bilayers of synaptic vesicles via its C-terminal PH (pleckstrin homology) domain. Since this interaction is relatively weak and non-specific, we hypothesize that other, more specific, interaction schemes exist. From the literature, it is evident that UNC-104 regulator SYD-2 interacts with UNC-10 and that UNC-10 itself interacts with RAB-3 bound to synaptic vesicles. RT-PCR and Western blot experiments expose genetic relationships between unc-10 and syd-2, but not between unc-10 and rab-3. Also, neither unc-10 nor rab-3 affects UNC-104 expression. However, co-immunoprecipitation and bimolecular fluorescence complementation (BiFC) assays reveal functional interactions between UNC-104, SYD-2, UNC-10 and RAB-3. Though both SNB-1 and RAB-3 are actively transported by UNC-104, motility of RAB-3 is facilitated in the presence of SYD-2 and UNC-10. Deletion of UNC-104's PH domain did not affect UNC-104/RAB-3 colocalization, but significantly affected UNC-104/SNB-1 colocalization. Similarly, motility of RAB-3-labeled vesicles is only slightly altered in nematodes carrying a point mutation in the PH domain, whereas movement of SNB-1 is significantly reduced in this mutant. Western blots from purified fractions of synaptic vesicles reveal strong reduction of UNC-104 in rab-3/unc-10 double mutants. Our findings suggest that the UNC-10/SYD-2 complex acts as a functional linker to connect UNC-104 to RAB-3-containing vesicles. Thus, this linker complex contributes to the specificity of motor/cargo interactions.
Keywords: Axonal transport; C. elegans; KIF1A; Liprin-α; RAB3A; RIMS1; VAMP2.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
