Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar 15:468:142304.
doi: 10.1016/j.foodchem.2024.142304. Epub 2024 Dec 4.

Artificial intelligence-driven quantification of antibiotic-resistant Bacteria in food by color-encoded multiplex hydrogel digital LAMP

Affiliations

Artificial intelligence-driven quantification of antibiotic-resistant Bacteria in food by color-encoded multiplex hydrogel digital LAMP

Tao Yang et al. Food Chem. .

Abstract

Antibiotic-resistant bacteria pose considerable risks to global health, particularly through transmission in the food chain. Herein, we developed the artificial intelligence-driven quantification of antibiotic-resistant bacteria in food using a color-encoded multiplex hydrogel digital loop-mediated isothermal amplification (LAMP) system. The quenching of unincorporated amplification signal reporters (QUASR) was first introduced in multiplex digital LAMP. During amplification, primers labeled with different fluorophores were integrated into amplicons, generating color-specific fluorescent spots. While excess primers were quenched by complementary quenching probes. After amplification, fluorescent spots in red, green, and blue emerged in hydrogels, which were automatically identified and quantified using a deep learning model. Methicillin-resistant Staphylococcus aureus and carbapenem-resistant Escherichia coli in real fruit and vegetable samples were also successfully detected. This artificial intelligence-driven color-encoded multiplex hydrogel LAMP offers promising potential for the digital quantification of antibiotic-resistant bacteria in the food industry.

Keywords: Antibiotic-resistant bacteria; Deep learning; Digital LAMP; Food safety; Multiplex detection.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

MeSH terms

Supplementary concepts

LinkOut - more resources