Optimal bailout strategies resulting from the drift controlled supercooled Stefan problem
- PMID: 39670181
- PMCID: PMC11636722
- DOI: 10.1007/s10479-023-05293-7
Optimal bailout strategies resulting from the drift controlled supercooled Stefan problem
Abstract
We consider the problem faced by a central bank which bails out distressed financial institutions that pose systemic risk to the banking sector. In a structural default model with mutual obligations, the central agent seeks to inject a minimum amount of cash in order to limit defaults to a given proportion of entities. We prove that the value of the central agent's control problem converges as the number of defaultable institutions goes to infinity, and that it satisfies a drift controlled version of the supercooled Stefan problem. We compute optimal strategies in feedback form by solving numerically a regularized version of the corresponding mean field control problem using a policy gradient method. Our simulations show that the central agent's optimal strategy is to subsidise banks whose equity values lie in a non-trivial time-dependent region.
Keywords: Bail-outs; Mean field control; Propagation of chaos; Supercooled Stefan problem; Systemic risk.
© The Author(s) 2023.
Figures










References
-
- Acciaio, B., Backhoff-Veraguas, J., & Carmona, R. (2019). Extended mean field control problems: Stochastic maximum principle and transport perspective. SIAM Journal on Control and Optimization,57(6), 3666–3693.
-
- Achdou, Y., & Capuzzo-Dolcetta, I. (2010). Mean field games: Numerical methods. SIAM Journal on Numerical Analysis,48(3), 1136–1162.
-
- Achdou, Y., & Laurière, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete and Continuous Dynamical Systems,35(9), 3879–3900.
-
- Achdou, Y., & Laurière, M. (2016). Mean field type control with congestion (II): An augmented Lagrangian method. Applied Mathematics and Optimization,74(3), 535–578.
-
- Achdou, Y., & Laurière, M. (2020). Mean field games and applications: Numerical aspects. Mean Field Games,2019, 249–307.
Grants and funding
LinkOut - more resources
Full Text Sources