Real-World and Clinical Trial Validation of a Deep Learning Radiomic Biomarker for PD-(L)1 Immune Checkpoint Inhibitor Response in Advanced Non-Small Cell Lung Cancer
- PMID: 39671539
- PMCID: PMC11658027
- DOI: 10.1200/CCI.24.00133
Real-World and Clinical Trial Validation of a Deep Learning Radiomic Biomarker for PD-(L)1 Immune Checkpoint Inhibitor Response in Advanced Non-Small Cell Lung Cancer
Abstract
Purpose: This study developed and validated a novel deep learning radiomic biomarker to estimate response to immune checkpoint inhibitor (ICI) therapy in advanced non-small cell lung cancer (NSCLC) using real-world data (RWD) and clinical trial data.
Materials and methods: Retrospective RWD of 1,829 patients with advanced NSCLC treated with PD-(L)1 ICIs were collected from 10 academic and community institutions in the United States and Europe. The RWD included data sets for discovery (Data Set A-Discovery, n = 1,173) and independent test (Data Set B, n = 458). A radiomic pipeline, containing a deep learning feature extractor and a survival model, generated the computed tomography (CT) response score (CTRS) applied to the pretreatment routine CT/positron emission tomography (PET)-CT scan. An enhanced CTRS (eCTRS) also incorporated age, sex, treatment line, and lesion annotations. Performance was evaluated against progression-free survival (PFS) and overall survival (OS). Biomarker generalizability was further evaluated using a secondary analysis of a prospective clinical trial (ClinicalTrials.gov identifier: NCT02573259) evaluating the PD-1 inhibitor sasanlimab in second or later line of treatment (Data Set C, n = 54).
Results: In RWD Test Data Set B, the CTRS identified patients with a high probability of response to ICI with a PFS hazard ratio (HR) of 0.46 (95% CI, 0.26 to 0.82) and an OS HR of 0.50 (95% CI, 0.28 to 0.92) in the first-line ICI monotherapy cohort, after adjustment for baseline covariates including the PD-L1 tumor proportion score. In Clinical Trial Data Set C, the CTRS demonstrated an adjusted PFS HR of 1.03 (95% CI, 0.43 to 2.47) and an OS HR of 0.33 (95% CI, 0.14 to 0.91). The CTRS and eCTRS outperformed traditional imaging biomarkers of lesion size in PFS and OS for RWD Test Data Set B and in OS for the Clinical Trial Data Set.
Conclusion: The study developed and validated a deep learning radiomic biomarker using pretreatment routine CT/PET-CT scans to identify ICI benefit in advanced NSCLC.
Conflict of interest statement
The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to
Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (
No other potential conflicts of interest were reported.
Figures








References
-
- Page DB, Postow MA, Callahan MK, et al. : Immune modulation in cancer with antibodies. Annu Rev Med 65:185-202, 2014 - PubMed
MeSH terms
Substances
Associated data
LinkOut - more resources
Full Text Sources
Medical
Research Materials