Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Mar:180:106728.
doi: 10.1016/j.biocel.2024.106728. Epub 2024 Dec 11.

The role of TRP channels in lung fibrosis: Mechanisms and therapeutic potential

Affiliations
Free article
Review

The role of TRP channels in lung fibrosis: Mechanisms and therapeutic potential

M Ratnasingham et al. Int J Biochem Cell Biol. 2025 Mar.
Free article

Abstract

Idiopathic pulmonary fibrosis (IPF) is a severe lung disease affecting around 5 million people globally, with a median survival of 3-4 years. Characterized by excessive scarring of lung tissue, IPF results from the accumulation of myofibroblasts that deposit extracellular matrix (ECM), causing fibrosis. Current treatments, pirfenidone and nintedanib, slow the disease but do not stop its progression. IPF pathogenesis involves repeated alveolar injury, leading to pro-fibrotic mediators like TGFβ1, which trigger fibroblast-to-myofibroblast transitions and ECM deposition. Recent research suggests that transient receptor potential (TRP) channels, such as TRPV4, TRPC6, and TRPA1, play a key role in regulating calcium signalling and mechanical stress, crucial in myofibroblast activation. Targeting TRP channels may disrupt fibrosis and offer new therapeutic strategies. Preclinical studies indicate that inhibiting TRP channels could reduce fibrosis, warranting further trials to explore their efficacy and safety in treating IPF and related fibrotic conditions.

Keywords: Fibrosis; Idiopathic Pulmonary Fibrosis; Ion channels; Therapeutic targets; Transient receptor potential (TRP) channels.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

MeSH terms

Substances

LinkOut - more resources