Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2025 Mar:195:105751.
doi: 10.1016/j.ijmedinf.2024.105751. Epub 2024 Dec 7.

A novel approach to antimicrobial resistance: Machine learning predictions for carbapenem-resistant Klebsiella in intensive care units

Affiliations
Observational Study

A novel approach to antimicrobial resistance: Machine learning predictions for carbapenem-resistant Klebsiella in intensive care units

V Alparslan et al. Int J Med Inform. 2025 Mar.

Abstract

This study was conducted at Kocaeli University Hospital in Turkey and aimed to predict carbapenem-resistant Klebsiella pneumoniae infection in intensive care units using the Extreme Gradient Boosting (XGBoost) algorithm, a form of artificial intelligence. This was a retrospective case-control study involving 289 patients, including 159 carbapenem-resistant and 130 carbapenem-susceptible individuals as controls. The model's predictive analysis combined a diverse range of demographic, clinical, and laboratory data, resulting in an average accuracy of 83.0%, precision of 83%, sensitivity of 88%, F1 score of 85%, and Matthews Correlation Coefficient of 0.66. Prolonged hospitalization and intensive care unit stay were significant predictors of carbapenem-resistant Klebsiella pneumoniae infection. The role of artificial intelligence role in healthcare, particularly in ICUs for managing antibiotic-resistant infections, is a major development in medicine. This study emphasizes the potential of artificial intelligence to predict antimicrobial resistance and improve clinical decisions in resource-limited settings. The study was approved by ClinicalTrials.gov (trial registration number NCT05985057 on 02.08.2023).

Keywords: Carbapenem-Resistant Enterobacteriaceae; Intensive Care Units; Klebsiella pneumoniae; Supervised Machine Learning.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

MeSH terms

Associated data