Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec 14;30(46):4969-4976.
doi: 10.3748/wjg.v30.i46.4969.

Gut microbiota and mesenteric adipose tissue interactions in shaping phenotypes and treatment strategies for Crohn's disease

Affiliations

Gut microbiota and mesenteric adipose tissue interactions in shaping phenotypes and treatment strategies for Crohn's disease

Anis Hasnaoui et al. World J Gastroenterol. .

Abstract

In this letter, we commented on the article by Wu et al. We examined the interactions between mesenteric adipose tissue, creeping fat, and gut microbiota in Crohn's disease (CD), a condition marked by chronic gastrointestinal inflammation with a rising global incidence. The pathogenesis of CD involves complex genetic, environmental, and microbial factors. Dysbiosis, which is an imbalance in gut microbial communities, is frequently observed in CD patients, highlighting the pivotal role of the gut microbiota in disease progression and the inflammatory response. Recent studies have shown that mesenteric adipose tissue and creeping fat actively contribute to inflammation by producing proinflammatory cytokines. The relationship between creeping fat and altered microbiota can shift from a potentially protective role to one that encourages bacterial translocation, further complicating disease management. Recent research has suggested that fecal microbiota transplantation could help restore microbial balance, offering a promising therapeutic strategy to improve clinical disease response.

Keywords: Creeping fat; Crohn’s disease; Dysbiosis; Fecal microbiota transplantation; Intestinal barrier; Intestinal microbiota; Mesenteric adipose tissue.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

Figures

Figure 1
Figure 1
Interactions between mesenteric adipose tissue and the microbiota in Crohn’s disease. Pathogenic bacteria adhere to the intestinal mucosa, thereby disrupting gut barrier integrity and causing bacterial translocation. Inflammatory signals from the microbiota induce the mesenteric adipose tissue to produce additional proinflammatory cytokines, thus sustaining the inflammatory state that characterizes the intestinal environment in Crohn’s disease.

Similar articles

Cited by

References

    1. Crocetti E, Bergamaschi W, Russo AG. Population-based incidence and prevalence of inflammatory bowel diseases in Milan (Northern Italy), and estimates for Italy. Eur J Gastroenterol Hepatol. 2021;33:e383–e389. - PMC - PubMed
    1. Li J, Simmons AJ, Hawkins CV, Chiron S, Ramirez-Solano MA, Tasneem N, Kaur H, Xu Y, Revetta F, Vega PN, Bao S, Cui C, Tyree RN, Raber LW, Conner AN, Pilat JM, Jacobse J, McNamara KM, Allaman MM, Raffa GA, Gobert AP, Asim M, Goettel JA, Choksi YA, Beaulieu DB, Dalal RL, Horst SN, Pabla BS, Huo Y, Landman BA, Roland JT, Scoville EA, Schwartz DA, Washington MK, Shyr Y, Wilson KT, Coburn LA, Lau KS, Liu Q. Identification and multimodal characterization of a specialized epithelial cell type associated with Crohn's disease. Nat Commun. 2024;15:7204. - PMC - PubMed
    1. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, Essers J, Mitrovic M, Ning K, Cleynen I, Theatre E, Spain SL, Raychaudhuri S, Goyette P, Wei Z, Abraham C, Achkar JP, Ahmad T, Amininejad L, Ananthakrishnan AN, Andersen V, Andrews JM, Baidoo L, Balschun T, Bampton PA, Bitton A, Boucher G, Brand S, Büning C, Cohain A, Cichon S, D'Amato M, De Jong D, Devaney KL, Dubinsky M, Edwards C, Ellinghaus D, Ferguson LR, Franchimont D, Fransen K, Gearry R, Georges M, Gieger C, Glas J, Haritunians T, Hart A, Hawkey C, Hedl M, Hu X, Karlsen TH, Kupcinskas L, Kugathasan S, Latiano A, Laukens D, Lawrance IC, Lees CW, Louis E, Mahy G, Mansfield J, Morgan AR, Mowat C, Newman W, Palmieri O, Ponsioen CY, Potocnik U, Prescott NJ, Regueiro M, Rotter JI, Russell RK, Sanderson JD, Sans M, Satsangi J, Schreiber S, Simms LA, Sventoraityte J, Targan SR, Taylor KD, Tremelling M, Verspaget HW, De Vos M, Wijmenga C, Wilson DC, Winkelmann J, Xavier RJ, Zeissig S, Zhang B, Zhang CK, Zhao H International IBD Genetics Consortium (IIBDGC), Silverberg MS, Annese V, Hakonarson H, Brant SR, Radford-Smith G, Mathew CG, Rioux JD, Schadt EE, Daly MJ, Franke A, Parkes M, Vermeire S, Barrett JC, Cho JH. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–124. - PMC - PubMed
    1. Younis N, Zarif R, Mahfouz R. Inflammatory bowel disease: between genetics and microbiota. Mol Biol Rep. 2020;47:3053–3063. - PubMed
    1. Yang L, Zhang Y, Yao B, Wu Q, Peng L, Yuan L. Timing of first abdominal operation in Crohn's disease based on a diagnostic model. Sci Rep. 2024;14:6099. - PMC - PubMed