Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2024 Dec 16;12(12):CD014780.
doi: 10.1002/14651858.CD014780.

The effect of sample site and collection procedure on identification of SARS-CoV-2 infection

Affiliations
Meta-Analysis

The effect of sample site and collection procedure on identification of SARS-CoV-2 infection

Clare Davenport et al. Cochrane Database Syst Rev. .

Abstract

Background: Sample collection is a key driver of accuracy in the diagnosis of SARS-CoV-2 infection. Viral load may vary at different anatomical sampling sites and accuracy may be compromised by difficulties obtaining specimens and the expertise of the person taking the sample. It is important to optimise sampling accuracy within cost, safety and accessibility constraints.

Objectives: To compare the sensitivity of different sampling collection sites and methods for the detection of current SARS-CoV-2 infection with any molecular or antigen-based test.

Search methods: Electronic searches of the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) were undertaken on 22 February 2022. We included independent evaluations from national reference laboratories, FIND and the Diagnostics Global Health website. We did not apply language restrictions.

Selection criteria: We included studies of symptomatic or asymptomatic people with suspected SARS-CoV-2 infection undergoing testing. We included studies of any design that compared results from different sample types (anatomical location, operator, collection device) collected from the same participant within a 24-hour period.

Data collection and analysis: Within a sample pair, we defined a reference sample and an index sample collected from the same participant within the same clinical encounter (within 24 hours). Where the sample comparison was different anatomical sites, the reference standard was defined as a nasopharyngeal or combined naso/oropharyngeal sample collected into the same sample container and the index sample as the alternative anatomical site. Where the sample comparison was concerned with differences in the sample collection method from the same site, we defined the reference sample as that closest to standard practice for that sample type. Where the sample pair comparison was concerned with differences in personnel collecting the sample, the more skilled or experienced operator was considered the reference sample. Two review authors independently assessed the risk of bias and applicability concerns using the QUADAS-2 and QUADAS-C checklists, tailored to this review. We present estimates of the difference in the sensitivity (reference sample (%) minus index sample sensitivity (%)) in a pair and as an average across studies for each index sampling method using forest plots and tables. We examined heterogeneity between studies according to population (age, symptom status) and index sample (time post-symptom onset, operator expertise, use of transport medium) characteristics.

Main results: This review includes 106 studies reporting 154 evaluations and 60,523 sample pair comparisons, of which 11,045 had SARS-CoV-2 infection. Ninety evaluations were of saliva samples, 37 nasal, seven oropharyngeal, six gargle, six oral and four combined nasal/oropharyngeal samples. Four evaluations were of the effect of operator expertise on the accuracy of three different sample types. The majority of included evaluations (146) used molecular tests, of which 140 used RT-PCR (reverse transcription polymerase chain reaction). Eight evaluations were of nasal samples used with Ag-RDTs (rapid antigen tests). The majority of studies were conducted in Europe (35/106, 33%) or the USA (27%) and conducted in dedicated COVID-19 testing clinics or in ambulatory hospital settings (53%). Targeted screening or contact tracing accounted for only 4% of evaluations. Where reported, the majority of evaluations were of adults (91/154, 59%), 28 (18%) were in mixed populations with only seven (4%) in children. The median prevalence of confirmed SARS-CoV-2 was 23% (interquartile (IQR) 13%-40%). Risk of bias and applicability assessment were hampered by poor reporting in 77% and 65% of included studies, respectively. Risk of bias was low across all domains in only 3% of evaluations due to inappropriate inclusion or exclusion criteria, unclear recruitment, lack of blinding, nonrandomised sampling order or differences in testing kit within a sample pair. Sixty-eight percent of evaluation cohorts were judged as being at high or unclear applicability concern either due to inflation of the prevalence of SARS-CoV-2 infection in study populations by selectively including individuals with confirmed PCR-positive samples or because there was insufficient detail to allow replication of sample collection. When used with RT-PCR • There was no evidence of a difference in sensitivity between gargle and nasopharyngeal samples (on average -1 percentage points, 95% CI -5 to +2, based on 6 evaluations, 2138 sample pairs, of which 389 had SARS-CoV-2). • There was no evidence of a difference in sensitivity between saliva collection from the deep throat and nasopharyngeal samples (on average +10 percentage points, 95% CI -1 to +21, based on 2192 sample pairs, of which 730 had SARS-CoV-2). • There was evidence that saliva collection using spitting, drooling or salivating was on average -12 percentage points less sensitive (95% CI -16 to -8, based on 27,253 sample pairs, of which 4636 had SARS-CoV-2) compared to nasopharyngeal samples. We did not find any evidence of a difference in the sensitivity of saliva collected using spitting, drooling or salivating (sensitivity difference: range from -13 percentage points (spit) to -21 percentage points (salivate)). • Nasal samples (anterior and mid-turbinate collection combined) were, on average, 12 percentage points less sensitive compared to nasopharyngeal samples (95% CI -17 to -7), based on 9291 sample pairs, of which 1485 had SARS-CoV-2. We did not find any evidence of a difference in sensitivity between nasal samples collected from the mid-turbinates (3942 sample pairs) or from the anterior nares (8272 sample pairs). • There was evidence that oropharyngeal samples were, on average, 17 percentage points less sensitive than nasopharyngeal samples (95% CI -29 to -5), based on seven evaluations, 2522 sample pairs, of which 511 had SARS-CoV-2. A much smaller volume of evidence was available for combined nasal/oropharyngeal samples and oral samples. Age, symptom status and use of transport media do not appear to affect the sensitivity of saliva samples and nasal samples. When used with Ag-RDTs • There was no evidence of a difference in sensitivity between nasal samples compared to nasopharyngeal samples (sensitivity, on average, 0 percentage points -0.2 to +0.2, based on 3688 sample pairs, of which 535 had SARS-CoV-2).

Authors' conclusions: When used with RT-PCR, there is no evidence for a difference in sensitivity of self-collected gargle or deep-throat saliva samples compared to nasopharyngeal samples collected by healthcare workers when used with RT-PCR. Use of these alternative, self-collected sample types has the potential to reduce cost and discomfort and improve the safety of sampling by reducing risk of transmission from aerosol spread which occurs as a result of coughing and gagging during the nasopharyngeal or oropharyngeal sample collection procedure. This may, in turn, improve access to and uptake of testing. Other types of saliva, nasal, oral and oropharyngeal samples are, on average, less sensitive compared to healthcare worker-collected nasopharyngeal samples, and it is unlikely that sensitivities of this magnitude would be acceptable for confirmation of SARS-CoV-2 infection with RT-PCR. When used with Ag-RDTs, there is no evidence of a difference in sensitivity between nasal samples and healthcare worker-collected nasopharyngeal samples for detecting SARS-CoV-2. The implications of this for self-testing are unclear as evaluations did not report whether nasal samples were self-collected or collected by healthcare workers. Further research is needed in asymptomatic individuals, children and in Ag-RDTs, and to investigate the effect of operator expertise on accuracy. Quality assessment of the evidence base underpinning these conclusions was restricted by poor reporting. There is a need for further high-quality studies, adhering to reporting standards for test accuracy studies.

PubMed Disclaimer

Conflict of interest statement

Jonathan J Deeks*: none known.

Jacqueline Dinnes (JD)* is a Cochrane DTA Editor. She was not involved in the editorial process for this review. JD declares a grant from Evidence Synthesis Ireland, National University of Ireland, Galway, to supervise three fellows contributing to a Cochrane review of rapid antigen tests for Covid‐19; paid to the institution. JD declares publishing opinions on the topic: (1) Dinnes J, Davenport C. COVID‐19 rapid antigen testing strategies must be evaluated in intended use settings. Lancet. Regional Health, Western Pacific 2022;25:100542. DOI: 10.1016/j.lanwpc.2022.100542; (2) Deeks JJ, Dinnes J, Davenport C, Takwoingi Y, McInnes M, Leeflang MM, Cunningham J. Letter to the Editor regarding Peto T; UK COVID‐19 Lateral Flow Oversight Team: COVID‐19: Rapid antigen detection for SARS‐CoV‐2 by lateral flow assay. EClinicalMedicine 2021;38; (3) Dinnes J. COVID‐19 rapid antigen testing strategies require careful evaluation. EBioMedicine 2021;70:103491; and (4) Dinnes J, Davenport C. Do we have informed consent for asymptomatic COVID‐19 testing in schools? BMJ Opinion. Available at https://blogs.bmj.com/bmj/2021/03/16/do‐we‐have‐informed‐consent‐for‐asymptomatic‐testing‐in‐schools/, 2021 [https://blogs.bmj.com/bmj/2021/03/16/do‐we‐have‐informed‐consent‐for‐asymptomatic‐testing‐in‐schools/, 2021].

Yemisi Takwoingi* is a member of the Cochrane Editorial Board, and an Editor with Cochrane Infectious Diseases and the Cochrane DTA Editorial Team. She was not involved in the editorial process for this review.

Clare Davenport* is the Contact Editor for the Cochrane DTA Editorial Team. She was not involved in the editorial process for this review.

Mariska MG Leeflang (MML) is an Associate Professor at Academisch Medisch Centrum, and Editor and member of the DTA Editorial Team. She was not involved in the editorial process for this review. MMGL declares a grant from Cochrane for finalising the DTA Handbook, of which she is an active proponent, and royalties from the sale of the Handbook; personal payment.

René Spijker (RS) is employed as an Information Specialist for three days per week at Amsterdam UMC. For two days per week, she is seconded to Cochrane Netherlands, which is hosted by the Universitair Medisch Centrum Utrecht. She was not involved in the editorial process for this review. RS declares that the Dutch Cochrane Centre (DCC) has received grants for performing commissioned systematic reviews. In no situation, the commissioner had any influence on the results of the work.

Sarah Berhane* is employed as a medicial statistician via grant funding from NIHR Birmingham Biomedical Research Centre to the University of Birmingham.

Ann Van den Bruel: none known.

Devy Emperador: is employed by FIND, with funding from FCDO and CAN. FIND is a global non‐for‐profit product development partnership and WHO Diagnostic Collaboration Centre. It is FIND’s role to accelerate access to high‐quality diagnostic tools for low‐resource settings and this is achieved by supporting both research and development and access activities for a wide range of diseases, including COVID‐19. FIND has several clinical research projects to evaluate multiple new diagnostic tests against published Target Product Profiles that have been defined through consensus processes. These studies are for diagnostic products developed by private sector companies who provide access to know‐how, equipment/reagents, and contribute through unrestricted donations as per FIND policy and external SAC review (i.e. these companies donate these tests to FIND for free for Find‐sponsored research studies).

Ingrid Arevalo‐Rodriguez: none known.

Miriam Mateos‐Haro: none known.

Agustin Ciapponi works as a health professional at Servicio de Medicina Familiar y Comunitaria, Hospital Italiano de Buenos Aires, Argentina.

Diana Buitrago‐Garcia: none known.

*Jonathan Deeks, Jacqueline Dinnes, Yemisi Takwoingi, Clare Davenport and Sarah Berhane are supported by the NIHR Birmingham Biomedical Research Centre. This paper presents independent research supported by the NIHR Birmingham Biomedical Research Centre at the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.

Figures

1
1
PRISMA flow diagram
2
2
Methodologial quality graph: all sample types
3
3
Methodological quality graph: saliva
4
4
Methodological quality graph: nasal
5
5
Methodological quality graph: oropharyngeal, nasal/oropharyngeal, oral rinse, operator, gargle, oral swab
6
6
Forest plot: nasal by COVID‐19 test technology and collection method Footnotes 
Ag: antigen; CI: confidence interval; COVID‐19: coronavirus disease 2019; N/A: not applicable; nos: not otherwise specified; PCR: reverse transcription polymerase chain reaction; tech: technology
7
7
Forest plot: saliva by collection method Footnotes
CI: confidence interval; COVID‐19: coronavirus disease 19; N/A: not applicable; nos: not otherwise specified; PCR: reverse transcription polymerase chain reaction; TMA: transcription‐mediated amplification
8
8
Forest plot: operator Footnotes
CI: confidence interval
9
9
Forest plot: Oropharyngeal Footnotes 
CI: confidence interval; OP: oropharyngeal
10
10
Forest plot: gargle Footnotes
CI: confidence interval
11
11
Forest plot: nasal/oropharyngeal Footnotes
CI: confidence interval; Nasal/OP: nasal/oropharyngeal combined sample
12
12
Forest plot: oral Footnotes
CI: confidence interval
13
13
Methodolgical quality summary: saliva
14
14
Methodological quality summary: nasal
15
15
Methodological quality summary: oropharyngeal, nasal/oropharyngeal, oral rinse, operator, gargle, oral swab
16
16
Forest plot: investigations of heterogeneity: saliva by COVID‐19 test technology Footnotes
CI: confidence interval; COVID‐19: coronavirus disease 19; PCR: reverse transcription polymerase chain reaction; tech: technology; TMA: transcription‐mediated amplification
17
17
Forest plot: investigations of heterogeneity: saliva by operator Footnotes
CI: confidence interval; HCP: healthcare professional; N/A: not applicable; nos: not otherwise specified; Self: performed by patient; Self‐supervised: testing supervised by a trained healthcare worker
18
18
Forest plot: investigations of heterogeneity: nasal by time Footnotes
CI: confidence interval; nos: not otherwise specified
1
1. Test
Saliva
2
2. Test
Oral rinse
3
3. Test
Gargle
4
4. Test
All nasal (mid‐turbinate, anterior and nos)
5
5. Test
Oropharyngeal (OP)
6
6. Test
Nasal/OP
7
7. Test
Oral swab
8
8. Test
Operator

Similar articles

  • Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.
    Dinnes J, Sharma P, Berhane S, van Wyk SS, Nyaaba N, Domen J, Taylor M, Cunningham J, Davenport C, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Van den Bruel A, Deeks JJ; Cochrane COVID-19 Diagnostic Test Accuracy Group. Dinnes J, et al. Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3. Cochrane Database Syst Rev. 2022. PMID: 35866452 Free PMC article.
  • Antibody tests for identification of current and past infection with SARS-CoV-2.
    Fox T, Geppert J, Dinnes J, Scandrett K, Bigio J, Sulis G, Hettiarachchi D, Mathangasinghe Y, Weeratunga P, Wickramasinghe D, Bergman H, Buckley BS, Probyn K, Sguassero Y, Davenport C, Cunningham J, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Struyf T, Van den Bruel A, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Deeks JJ; Cochrane COVID-19 Diagnostic Test Accuracy Group. Fox T, et al. Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD013652. doi: 10.1002/14651858.CD013652.pub2. Cochrane Database Syst Rev. 2022. PMID: 36394900 Free PMC article.
  • Laboratory-based molecular test alternatives to RT-PCR for the diagnosis of SARS-CoV-2 infection.
    Arevalo-Rodriguez I, Mateos-Haro M, Dinnes J, Ciapponi A, Davenport C, Buitrago-Garcia D, Bennouna-Dalero T, Roqué-Figuls M, Van den Bruel A, von Eije KJ, Emperador D, Hooft L, Spijker R, Leeflang MM, Takwoingi Y, Deeks JJ. Arevalo-Rodriguez I, et al. Cochrane Database Syst Rev. 2024 Oct 14;10(10):CD015618. doi: 10.1002/14651858.CD015618. Cochrane Database Syst Rev. 2024. PMID: 39400904
  • Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
    Struyf T, Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Leeflang MM, Spijker R, Hooft L, Emperador D, Domen J, Tans A, Janssens S, Wickramasinghe D, Lannoy V, Horn SRA, Van den Bruel A; Cochrane COVID-19 Diagnostic Test Accuracy Group. Struyf T, et al. Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3. Cochrane Database Syst Rev. 2022. PMID: 35593186 Free PMC article.
  • Thoracic imaging tests for the diagnosis of COVID-19.
    Ebrahimzadeh S, Islam N, Dawit H, Salameh JP, Kazi S, Fabiano N, Treanor L, Absi M, Ahmad F, Rooprai P, Al Khalil A, Harper K, Kamra N, Leeflang MM, Hooft L, van der Pol CB, Prager R, Hare SS, Dennie C, Spijker R, Deeks JJ, Dinnes J, Jenniskens K, Korevaar DA, Cohen JF, Van den Bruel A, Takwoingi Y, van de Wijgert J, Wang J, Pena E, Sabongui S, McInnes MD; Cochrane COVID-19 Diagnostic Test Accuracy Group. Ebrahimzadeh S, et al. Cochrane Database Syst Rev. 2022 May 16;5(5):CD013639. doi: 10.1002/14651858.CD013639.pub5. Cochrane Database Syst Rev. 2022. PMID: 35575286 Free PMC article.

Cited by

References

References to studies included in this review

Abdollahi 2020a {published data only}
    1. Abdollahi A, Shakoori A, Khoshnevis H, Arabzadeh M, Dehghan Manshadi SA, Mohammadnejad E, et al. Comparison of patient-collected and lab technician-collected nasopharyngeal and oropharyngeal swabs for detection of COVID-19 by RT-PCR. Iranian Journal of Pathology 2020;15(4):313-9. - PMC - PubMed
Abdollahi 2020b {published data only}
    1. Abdollahi A, Shakoori A, Khoshnevis H, Arabzadeh M, Dehghan Manshadi SA, Mohammadnejad E, et al. Comparison of patient-collected and lab technician-collected nasopharyngeal and oropharyngeal swabs for detection of COVID-19 by RT-PCR. Iranian Journal of Pathology 2020;15(4):313-9. - PMC - PubMed
AbdulRahman 2020a {published data only}
    1. AbdulRahman AK, AlBastaki A, AlAwadhi A, Alwazaan A, AlQahtani M. Diagnostic and monitoring utilities of saliva for SARS-CoV-2. MedRxiv 2020;NA:no pagination. [DOI: ]
AbdulRahman 2020b {published data only}
    1. AbdulRahman A, AlBastaki A, AlAwadhi A, Alwazaan A, AlQahtani M. Diagnostic and monitoring utilities of saliva for SARS-CoV-2. MedRxiv 2020;NA:no pagination. [DOI: ]
Aita 2020 {published data only}
    1. Aita A, Basso D, Cattelan AM, Fioretto P, Navaglia F, Barbaro F, et al. SARS-CoV-2 identification and IgA antibodies in saliva: one sample two tests approach for diagnosis. Clinica Chimica Acta 2020;510:717-22. - PMC - PubMed
Akgun Dogan 2021 {published data only}
    1. Akgun Dogan O, Kose B, Agaoglu NB, Yildiz J, Alkurt G, Kendir DY, et al. Does sampling saliva increase detection of SARS-CoV-2 by RT-PCR? Comparing saliva with oro-nasopharyngeal swabs. Journal of Virological Methods 2021;290:114049. - PMC - PubMed
Al Suwaidi 2021 {published data only}
    1. Al Suwaidi H, Senok A, Varghese R, Deesi Z, Khansaheb H, Pokasirakath S, et al. Saliva for molecular detection of SARS-CoV-2 in school-age children. Clinical Microbiology and Infection 2021;27(9):1330-5. - PMC - PubMed
Altawalah 2020 {published data only}
    1. Altawalah H, AlHuraish F, Alkandari WA, Ezzikouri S. Saliva specimens for detection of severe acute respiratory syndrome coronavirus 2 in Kuwait: a cross-sectional study. Journal of Clinical Virology 2020;132:104652. - PMC - PubMed
Amoo 2021 {published data only}
    1. Amoo OS, Adewara F, Tijani B, Onuigbo TI, Ikemefuna AS, Oraegbu JI, et al. The use of DIY (Do it yourself) sampling and telemonitoring model for COVID-19 qPCR testing scale up. PloS One 2021;16(11):e0259398. - PMC - PubMed
Babady 2021 {published data only}
    1. Babady NE, McMillen T, Jani K, Viale A, Robilotti EV, Aslam A, et al. Performance of severe acute respiratory syndrome coronavirus 2 real-time RT-PCR tests on oral rinses and saliva samples. Journal of Molecular Diagnostics 2021;23(1):3-9. - PMC - PubMed
Banerjee 2021 {published data only}
    1. Banerjee D, Sasidharan A, Abdulhamid A, Orosco EM, Watts JL, Schuster JE, et al. Diagnostic yield of saliva for SARS-CoV-2 molecular testing in children. Journal of Pediatric Infectious Diseases Society 2021;10(10):967-9. - PMC - PubMed
Becker 2020 {published data only}
    1. Becker D, Sandoval E, Amin A, De Hoff P, Diets A, Leonetti N, et al. Saliva is less sensitive than nasopharyngeal swabs for COVID-19 detection in the community setting. MedRxiv 2020;NA:no pagination. [DOI: ]
Begum 2022 {published data only}
    1. Begum MN, Jubair M, Nahar K, Rahman S, Talha M, Sarker MS, et al. Factors influencing the performance of rapid SARS-CoV-2 antigen tests under field condition. Journal of Clinical Laboratory Analysis 2022;36(2):e24203. - PMC - PubMed
Benoit 2021 {published data only}
    1. Benoit P, Labbe AC, Lalancette L, Gagnon S, Bonneau E, Lavallee C, et al. Comparison of SARS-CoV-2 detection with the Cobas(R) 6800/8800 system on gargle samples using two sample processing methods with combined oropharyngeal/nasopharyngeal swab. Journal of Medical Virology 2021;93(12):6837-40. - PMC - PubMed
Bhattacharya 2021 {published data only}
    1. Bhattacharya D, Parai D, Rout UK, Dash P, Nanda RR, Dash GC, et al. Saliva for diagnosis of SARS-CoV-2: first report from India. Journal of Medical Virology 2021;93(4):2529-33. - PubMed
Bidkar 2022 {published data only}
    1. Bidkar V, Mishra M, Gade N, Selvaraj K. Conventional naso-oropharyngeal sampling versus self-collected saliva samples in COVID-19 testing. Indian Journal of Otolaryngology Head Neck Surgery 2022;74(Suppl 2):2923-9. - PMC - PubMed
Bikos 2021 {published data only}
    1. Bikos DA, Hwang C, Brileya KA, Parker A, Loveday EK, Rodriguez M, et al. SLAMP: a rapid fluorometric RT-LAMP assay for sensitive and specific detection of SARS-CoV-2 from human saliva. MedRxiv 2021;NA:no pagination. [DOI: ]
Boerger 2021 {published data only}
    1. Boerger AC, Buckwalter S, Fernholz EC, Jannetto PJ, Binnicker MJ, Reed K, et al. Evaluation of self-collected midturbinate nasal swabs and saliva for detection of SARS-CoV-2 RNA. Journal of Clinical Microbiology 2021;59(9):e0084821. - PMC - PubMed
Borghi 2021a {published data only}
    1. Borghi E, Massa V, Carmagnola D, Dellavia C, Parodi C, Ottaviano E, et al. Saliva sampling for chasing SARS-CoV-2: a game-changing strategy. Pharmaceutical Research 2021;165:105380. - PMC - PubMed
Borghi 2021b {published data only}
    1. Borghi E, Massa V, Carmagnola D, Dellavia C, Parodi C, Ottaviano E, et al. Saliva sampling for chasing SARS-CoV-2: a game-changing strategy. Pharmaceutical Research 2021;165:105380. - PMC - PubMed
Borghi 2021c {published data only}
    1. Borghi E, Massa V, Carmagnola D, Dellavia C, Parodi C, Ottaviano E, et al. Saliva sampling for chasing SARS-CoV-2: a game-changing strategy. Pharmaceutical Research 2021;165:105380. - PMC - PubMed
Boutros 2021(a) {published data only}
    1. Boutros J, Benzaquen J, Marquette CH, Ilié M, Labaky M, Benchetrit D, et al. Salivary detection of COVID-19: clinical performance of oral sponge sampling for SARS-CoV-2 testing. ERJ Open Research 2021;7(4):00396-2021. - PMC - PubMed
Boutros 2021 (b) {published data only}
    1. Boutros J, Benzaquen J, Marquette CH, Ilié M, Labaky M, Benchetrit D, et al. Salivary detection of COVID-19: clinical performance of oral sponge sampling for SARS-CoV-2 testing. ERJ Open Research 2021;7(4):00396-2021. - PMC - PubMed
Bruxvoort 2021 {published data only}
    1. Bruxvoort K, Tenggardjaja CF, Slezak J, Gullett JC, Broder B, Park CH, et al. Variation in SARS-CoV-2 molecular test sensitivity by specimen types in a large sample of Emergency Department patients. American Journal of Emergency Medicine 2021;50:381-7. - PMC - PubMed
Callahan 2021(a) {published data only}
    1. Callahan C, Ditelberg S, Dutta S, Littlehale N, Cheng A, Kupczewski K, et al. Saliva is comparable to nasopharyngeal swabs for molecular detection of SARS-CoV-2. Microbiology Spectrum 2021;9(1):e0016221. - PMC - PubMed
Callahan 2021(b) {published data only}
    1. Callahan C, Ditelberg S, Dutta S, Littlehale N, Cheng A, Kupczewski K, et al. Saliva is comparable to nasopharyngeal swabs for molecular detection of SARS-CoV-2. Microbiology Spectrum 2021;9(1):e0016221. - PMC - PubMed
Callahan 2021(c) {published data only}
    1. Callahan C, Ditelberg S, Dutta S, Littlehale N, Cheng A, Kupczewski K, et al. Saliva is comparable to nasopharyngeal swabs for molecular detection of SARS-CoV-2. Microbiology Spectrum 2021;9(1):e0016221. - PMC - PubMed
Callahan 2021(d) {published data only}
    1. Callahan C, Ditelberg S, Dutta S, Littlehale N, Cheng A, Kupczewski K, et al. Saliva is comparable to nasopharyngeal swabs for molecular detection of SARS-CoV-2. Microbiology Spectrum 2021;9(1):e0016221. - PMC - PubMed
Callahan 2021(e) {published data only}
    1. Callahan C, Lee RA, Lee GR, Zulauf K, Kirby JE, Arnaout R. Nasal swab performance by collection timing, procedure, and method of transport for patients with SARS-CoV-2. Journal of Clinical Microbiology 2021;59(9):e0056921. - PMC - PubMed
Castelain 2021 {published data only}
    1. Castelain S, Francois C, Demey B, Aubry A, Lanoix JP, Duverlie G, et al. Comparison of nasopharyngeal and saliva swabs for the detection of RNA SARS-CoV-2 during mass screening (SALICOV study). New Microbiologica 2021;44(1):59-61. - PubMed
Chu 2021 (a) {published data only}
    1. Chu CY, Marais G, Opperman C, Doolabh D, Iranzadeh A, Marais C, et al. Performance of saliva and mid-turbinate swabs for detection of the beta variant in South Africa. Lancet Infectious Diseases 2021;21(10):1354. - PMC - PubMed
Chu 2021 (b) {published data only}
    1. Chu CY, Marais G, Opperman C, Doolabh D, Iranzadeh A, Marais C, et al. Performance of saliva and mid-turbinate swabs for detection of the beta variant in South Africa. Lancet Infectious Diseases 2021;21(10):1354. - PMC - PubMed
Congrave‐Wilson 2021 {published data only}
    1. Congrave-Wilson Z, Lee Y, Jumarang J, Perez S, Bender JM, Bard JD, et al. Change in saliva RT-PCR sensitivity over the course of SARS-CoV-2 infection. JAMA 2021;326(11):1065-7. - PMC - PubMed
Cradic 2020 {published data only}
    1. Cradic K, Lockhart M, Ozbolt P, Fatica L, Landon L, Lieber M, et al. Clinical evaluation and utilization of multiple molecular in vitro diagnostic assays for the detection of SARS-CoV-2. American Journal of Clinical Pathology 2020;154(2):201-7. - PMC - PubMed
Da Costa Fernandes 2021 {published data only}
    1. Da Costa Fernandes PA, Da Conceição Ferreira F, Morais OM, Taxa Ramos CM, Raposo Fernandes EM, Rocha S, et al. Performance of saliva as a specimen to detect SARS-CoV-2. Journal of Clinical Virology 2021;142:104913. - PMC - PubMed
Da Silva 2022 {published data only}
    1. Verissimo Rodrigues Da Silva N, Neves Pereira SS, Kavalco KF, Bezerra Meneg�dio F, Medeiros-Santana L, Vis�tto LE, et al. Molecular diagnosis of SARS-CoV-2: a validation of saliva samples. MedRxiv 2022;NA:no pagination. [DOI: ]
De Oliveira 2021 {published data only}
    1. De Oliveira CM, Brochi L, Scarpelli LC, Lopes AC, Levi JE. SARS-CoV-2 saliva testing is a useful tool for Covid-19 diagnosis. Journal of Virological Methods 2021;296:114241. - PMC - PubMed
Desai 2021(a)[A] {published data only}
    1. Desai KT, Alfaro K, Mendoza L, Faron M, Mesich B, Maza M, et al. Multisite clinical validation of isothermal amplification-based SARS-CoV-2 detection assays using different sampling strategies. Microbiology Spectrum 2021;9(2):e0084621. - PMC - PubMed
Desai 2021(a)[B] {published data only}
    1. Desai KT, Alfaro K, Mendoza L, Faron M, Mesich B, Maza M, et al. Multisite clinical validation of isothermal amplification-based SARS-CoV-2 detection assays using different sampling strategies. Microbiology Spectrum 2021;9(2):e0084621. - PMC - PubMed
Desai 2021(a)[C] {published data only}
    1. Desai KT, Alfaro K, Mendoza L, Faron M, Mesich B, Maza M, et al. Multisite clinical validation of isothermal amplification-based SARS-CoV-2 detection assays using different sampling strategies. Microbiology Spectrum 2021;9(2):e0084621. - PMC - PubMed
Desai 2021(b) {published data only}
    1. Desai KT, Alfaro K, Mendoza L, Faron M, Mesich B, Maza M, et al. Multisite clinical validation of isothermal amplification-based SARS-CoV-2 detection assays using different sampling strategies. Microbiology Spectrum 2021;9(2):e0084621. - PMC - PubMed
Desmet 2020 {published data only}
    1. Desmet T, De Paepe P, Boelens J, Coorevits L, Padalko E, Vandendriessche S, et al. Combined oropharyngeal/nasal swab is equivalent to nasopharyngeal sampling for SARS-CoV-2 diagnostic PCR. BMC Microbiology 2021;22(1):31. - PMC - PubMed
Dumaresq 2021 {published data only}
    1. Dumaresq J, Coutlee F, Dufresne PJ, Longtin J, Fafard J, Bestman-Smith J, et al. Natural spring water gargle and direct RT-PCR for the diagnosis of COVID-19 (COVID-SPRING study). Journal of Clinical Virology 2021;144:104995. - PMC - PubMed
Echavarria 2021 {published data only}
    1. Echavarria M, Reyes NS, Rodriguez PE, Ypas M, Ricarte C, Rodriguez MP, et al. Self-collected saliva for SARS-CoV-2 detection: a prospective study in the emergency room. Journal of Medical Virology 2021;93(5):3268-72. - PMC - PubMed
Escobar 2021 {published data only}
    1. Escobar DF, Diaz P, Diaz-Dinamarca D, Puentes R, Alarcon P, Alarcon B, et al. Validation of a methodology for the detection of severe acute respiratory syndrome coronavirus 2 in saliva by real-time reverse transcriptase-PCR. Frontiers in Public Health 2021;9:743300. - PMC - PubMed
Felix 2022 {published data only}
    1. Felix AC, De Paula AV, Ribeiro AC, Da Silva FC, Inemami M, Costa AA, et al. Saliva as a reliable sample for COVID-19 diagnosis in paediatric patients. International Journal of Paediatric Dentistry 2022;32(1):123-5. - PubMed
Fernandez‐Gonzalez 2021(a) {published data only}
    1. Fernandez-Gonzalez M, Agullo V, De la Rica A, Infante A, Carvajal M, Garcia JA, et al. Performance of saliva specimens for the molecular detection of SARS-CoV-2 in the community setting: does sample collection method matter? Journal of Clinical Microbiology 2021;59(4):e03033-20. - PMC - PubMed
Fernandez‐Gonzalez 2021(b) {published data only}
    1. Fernandez-Gonzalez M, Agullo V, De la Rica A, Infante A, Carvajal M, Garcia JA, et al. Performance of saliva specimens for the molecular detection of SARS-CoV-2 in the community setting: does sample collection method matter? Journal of Clinical Microbiology 2021;59(4):e03033-20. - PMC - PubMed
Fernandez‐Gonzalez 2021 (c) {published data only}
    1. Fernandez-Gonzalez M, Agullo V, De la Rica A, Infante A, Carvajal M, Garcia JA, et al. Performance of saliva specimens for the molecular detection of SARS-CoV-2 in the community setting: does sample collection method matter? Journal of Clinical Microbiology 2021;59(4):e03033-20. - PMC - PubMed
Fernández‐Pittol 2020 {published data only}
    1. Fernandez-Pittol M, Hurtado JC, Moreno-Garcia E, Rubio E, Navarro M, Valiente M, et al. Assessment of the use and quick preparation of saliva for rapid microbiological diagnosis of COVID-19. BioRxiv 2020;NA:no pagination. [DOI: ]
FIND (a) 2021 {published data only}
    1. FIND. Evaluation of bionote, inc. Nowcheck COVID-19 Ag test nasal. External report. https://www.finddx.org/wp-content/uploads/2023/01/20220923_bionote_nowch... (accessed prior to 26/10/2024);(1.0).
FIND (b) 2021 {published data only}
    1. FIND. Evaluation of Abbott Panbio COVID-19ag rapid test device (nasal). https://pmc.ncbi.nlm.nih.gov/articles/PMC8111145/ (accessed prior to 26/10/2024).
FIND (c) 2021(a) {published data only}
    1. FIND. Evaluation of SD biosensor, inc. STANDARD q COVID-19 ag test, nasal swab. External report. https://www.finddx.org/wp-content/uploads/2023/01/20221004_sd_biosensor_... 2021;(1.0).
FIND(c) 2021 (b) {published data only}
    1. Evaluation of SD biosensor, inc. STANDARD q COVID-19 ag test, nasal swab. https://www.finddx.org/wp-content/uploads/2023/01/20210413_sd_biosensor_... (accessed prior to 26/10/2024);(1.0).
FIND(s) 2021 {published data only}
    1. FIND. Evaluation of Premier Medical Corporation Pvt.Ltd Sure Status COVID-19 Antigen Card test, nasal swab. External report. https://www.finddx.org/wp-content/uploads/2023/01/20211201_premier_sures... (accessed prior to 26/10/2024);(1.0).
Fougere 2021 {published data only}
    1. Fougere Y, Schwob JM, Miauton A, Hoegger F, Opota O, Jaton K, et al. Performance of RT-PCR on saliva specimens compared with nasopharyngeal swabs for the detection of SARS-CoV-2 in children: a prospective comparative clinical trial. Pediatric Infectious Disease Journal 2021;40(8):e300-4. - PubMed
Fronza 2021 (a) {published data only}
    1. Fronza F, Groff N, Martinelli A, Passerini BZ, Rensi N, Cortelletti, et al. A community study of SARS-CoV-2 detection by RT-PCR in saliva: a reliable and effective method. Viruses 2022;14:313. - PMC - PubMed
Fronza 2021 (b) {published data only}
    1. Fronza F, Groff N, Martinelli A, Passerini BZ, Rensi N, Cortelletti, et al. A community study of SARS-CoV-2 detection by RT-PCR in saliva: a reliable and effective method. Viruses 2022;14:313. - PMC - PubMed
Goncalves 2021 {published data only}
    1. Goncalves CC, Barroso SP, Herlinger AL, Galliez RM, De Almeida TB, Boullosa LT, et al. COVID-19 diagnosis by RT-qPCR in alternative specimens. Memorias do Instituto Oswaldo Cruz 2021;116:e210085. - PMC - PubMed
Griesemer 2021 (a) {published data only}
    1. Griesemer SB, Van Slyke G, Ehrbar D, Strle K, Yildirim T, Centurioni DA, et al. Evaluation of specimen types and saliva stabilization solutions for SARS-CoV-2 testing. Journal of Clinical Microbiology 2021;59(5):e01418-20. - PMC - PubMed
Griesemer 2021 (b) {published data only}
    1. Griesemer SB, Van Slyke G, Ehrbar D, Strle K, Yildirim T, Centurioni DA, et al. Evaluation of specimen types and saliva stabilization solutions for SARS-CoV-2 testing. Journal of Clinical Microbiology 2021;59(5):e01418-20. - PMC - PubMed
Guclu 2020 (a) {published data only}
    1. Guclu E, Koroglu M, Yurumez Y, Toptan H, Kose E, Guneysu F, et al. Comparison of saliva and oro-nasopharyngeal swab sample in the molecular diagnosis of COVID-19. Revista da Associação Médica Brasileira 2020;66(8):1116-21. - PubMed
Guclu 2020 (b) {published data only}
    1. Guclu E, Koroglu M, Yurumez Y, Toptan H, Kose E, Guneysu F, et al. Comparison of saliva and oro-nasopharyngeal swab sample in the molecular diagnosis of COVID-19. Revista da Associação Médica Brasileira 2020;66(8):1116-21. - PubMed
Guzman‐Ortiz 2021 {published data only}
    1. Guzman-Ortiz AL, Nevfrez-Ramirez AJ, Lopez-Martinez B, Parra-Ortega I, Angeles-Floriano T, Martinez-Rodriguez N, et al. Sensitivity of the molecular test in saliva for detectionof COVID-19 in pediatric patients with concurrent conditions. Frontiers in Paediatrics 2021;9:642781. [DOI: 10.3389/fped.2021.642781] - DOI - PMC - PubMed
Hamilton 2021 {published data only}
    1. Hamilton JR, Stahl EC, Tsuchida CA, Lin-Shiao E, Tsui CK, Pestal K, et al. Robotic RNA extraction for SARS-CoV-2 surveillance using saliva samples. PloS One 2021;16(8):e0255690. - PMC - PubMed
Herrera 2021 {published data only}
    1. Herrera LA, Hidalgo-Miranda A, Reynoso-Noverón N, Meneses-García AA, Mendoza-Vargas A, Reyes-Grajeda JP, et al. Saliva is a reliable and accessible source for the detection of SARS-CoV-2. International Journal of Infectious Diseases 2021;105:83-90. - PMC - PubMed
Huber 2021 (a) {published data only}
    1. Huber M, Schreiber PW, Scheier T, Audige A, Buonomano R, Rudiger A, et al. High efficacy of saliva in detecting SARS-CoV-2 by RT-PCR in adults and children. Microorganisms 2021;9(3):642. - PMC - PubMed
Huber 2021 (b) {published data only}
    1. Huber M, Schreiber PW, Scheier T, Audige A, Buonomano R, Rudiger A, et al. High efficacy of saliva in detecting SARS-CoV-2 by RT-PCR in adults and children. Microorganisms 2021;9(3):642. - PMC - PubMed
Huber 2021 (c) {published data only}
    1. Huber M, Schreiber PW, Scheier T, Audige A, Buonomano R, Rudiger A, et al. High efficacy of saliva in detecting SARS-CoV-2 by RT-PCR in adults and children. Microorganisms 2021;9(3):642. - PMC - PubMed
Justo 2021 {published data only}
    1. Justo AF, Bueno MS, Barbosa GR, Perosa AH, Carvalho JM, Bellei N. Comparison of viral load between saliva and nasopharyngeal swabs for SARS-CoV-2: the role of days of symptoms onset on diagnosis. Memorias do Instituto Oswaldo Cruz 2021;116:e210018. - PMC - PubMed
Kannian 2021 {published data only}
    1. Kannian P, Jayaraman BG, Alamelu S, Lavanya C, Kumarasamy N, Rajan G, et al. Implications in the quantification of SARS-CoV-2 copies in concurrent nasopharyngeal swabs, whole mouth fluid and respiratory droplets. Virus Research 2021;303:198442. - PMC - PubMed
Kerneis 2021 (a) {published data only}
    1. Kerneis S, Elie C, Fourgeaud J, Choupeaux L, Delarue SM, Alby ML, et al. Accuracy of saliva and nasopharyngeal sampling for detection of SARS-CoV-2 in community screening: a multicentric cohort study. European Journal of Clinical Microbiology & Infectious Diseases 2021;40(11):2379-88. - PMC - PubMed
Kerneis 2021 (b) {published data only}
    1. Kerneis S, Elie C, Fourgeaud J, Choupeaux L, Delarue SM, Alby ML, et al. Accuracy of saliva and nasopharyngeal sampling for detection of SARS-CoV-2 in community screening: a multicentric cohort study. European Journal of Clinical Microbiology & Infectious Diseases 2021;40(11):2379-88. - PMC - PubMed
Kerneis 2021 (c) {published data only}
    1. Kerneis S, Elie C, Fourgeaud J, Choupeaux L, Delarue SM, Alby ML, et al. Accuracy of saliva and nasopharyngeal sampling for detection of SARS-CoV-2 in community screening: a multicentric cohort study. European Journal of Clinical Microbiology & Infectious Diseases 2021;40(11):2379-88. - PMC - PubMed
Klein 2021 {published data only}
    1. Klein JA, Kruger LJ, Tobian F, Gaeddert M, Lainati F, Schnitzler P, et al. Head-to-head performance comparison of self-collected nasal versus professional-collected nasopharyngeal swab for a WHO-listed SARS-CoV-2 antigen-detecting rapid diagnostic test. Medical Microbiology and Immunology 2021;210(4):181-6. - PMC - PubMed
Kocagoz 2021 {published data only}
    1. Kocagoz T, Can O, Yurttutan Uyar N, Aksoy E, Polat T, Cankaya D, et al. Simple concentration method enables the use of gargle and mouthwash instead of nasopharyngeal swab sampling for the diagnosis of COVID-19 by PCR. European Journal of Clinical Microbiology & Infectious Diseases 2021;40(12):2617-22. - PMC - PubMed
Kojima 2020 {published data only}
    1. Kojima N, Turner F, Slepnev V, Bacelar A, Deming L, Kodeboyina S, et al. Self-collected oral fluid and nasal swabs demonstrate comparable sensitivity to clinician collected nasopharyngeal swabs for COVID-19 detection. Clinical Infectious Diseases 2021;73(9):e3106-e3109. - PMC - PubMed
Labhardt 2022 {published data only}
    1. Labhardt ND, Gonzalez Fernandez L, Katende B, Muhairwe J, Bresser M, Amstutz A, et al. Head-to-head comparison of nasal and nasopharyngeal sampling using SARS-CoV-2 rapid antigen testing in Lesotho. MedRxiv: the Preprint Server for Health Sciences 2022;NA:2021.12.29.21268505. - PMC - PubMed
    1. Labhardt ND, Gonzalez Fernandez L, Katende B, Muhairwe J, Bresser M, Amstutz A, et al. Head-to-head comparison of nasal and nasopharyngeal sampling using SARS-CoV-2 rapid antigen testing in Lesotho. PLoS One 2023;18(3):e0278653. - PMC - PubMed
Landry 2020 {published data only}
    1. Landry ML, Criscuolo J, Peaper DR. Challenges in use of saliva for detection of SARS CoV-2 RNA in symptomatic outpatients. Journal of Clinical Virology 2020;130:104567. - PMC - PubMed
Leung 2020 {published data only}
    1. Leung EC, Chow VC, Lee MK, Lai RW. Deep throat saliva as an alternative diagnostic specimen type for the detection of SARS-CoV-2. Journal of Medical Virology 2020;93(1):533-6. - PMC - PubMed
Lindner 2021 {published data only}
    1. Lindner AK, Nikolai O, Rohardt C, Kausch F, Wintel M, Gertler M, et al. Diagnostic accuracy and feasibility of patient self-testing with a SARS-CoV-2 antigen-detecting rapid test. Journal of Clinical Virology 2021;141:104874. - PMC - PubMed
Lopes 2021 {published data only}
    1. Lopes JI, Da Costa Silva CA, Cunha RG, Soares AM, Lopes ME, Da Conceicao Neto OC, et al. A large cohort study of SARS-CoV-2 detection in saliva: a non-invasive alternative diagnostic test for patients with bleeding disorders. Viruses 2021;13(12):2361. - PMC - PubMed
Mahmoud 2021 {published data only}
    1. Mahmoud SA, Ganesan S, Ibrahim E, Thakre B, Teddy JG, Raheja P, et al. Evaluation of RNA extraction-free method for detection of SARS-CoV-2 in salivary samples for mass screening for COVID-19. BioMed Research International 2021;2021:5568350. - PMC - PubMed
Marquette 2021 (a) {published data only}
    1. Boutros J, Benzaquen J, Marquette CH, Ilié M, Labaky M, Benchetrit D, et al. Salivary detection of COVID-19: clinical performance of oral sponge sampling for SARS-CoV-2 testing. ERJ Open Research 2021;7:00396-2021. - PMC - PubMed
    1. Marquette CH, Boutros J, Benzaquen J, Ili� M, Labaky M, Benchetrit D, et al. Clinical performance of oral sponge sampling for detection by RT-PCR of SARS-CoV-2. MedRxiv 2021;NA:no pagination. [DOI: ] - PMC - PubMed
Marquette 2021 (b) {published data only}
    1. Boutros J, Benzaquen J, Marquette CH, Ilié M, Labaky M, Benchetrit D, et al. Salivary detection of COVID-19: clinical performance of oral sponge sampling for SARS-CoV-2 testing. ERJ Open Research 2021;7:00396-2021. - PMC - PubMed
    1. Marquette CH, Boutros J, Benzaquen J, Ilie M, Labaky M, Benchetrit D, et al. Clinical performance of oral sponge sampling for detection by RT-PCR of SARS-CoV-2. MedRxiv 2021;NA:no pagination. [DOI: ] - PMC - PubMed
Marquette 2021 (c) {published data only}
    1. Boutros J, Benzaquen J, Marquette CH, Ilié M, Labaky M, Benchetrit D, et al. Salivary detection of COVID-19: clinical performance of oral sponge sampling for SARS-CoV-2 testing. ERJ Open Research 2021;7:00396-2021. - PMC - PubMed
    1. Marquette CH, Boutros J, Benzaquen J, Ili� M, Labaky M, Benchetrit D, et al. Clinical performance of oral sponge sampling for detection by RT-PCR of SARS-CoV-2. MedRxiv 2021;NA:no pagination. [DOI: ] - PMC - PubMed
Marx 2021 (a) {published data only}
    1. Marx GE, Smith-Jeffcoat SE, Biggerstaff BJ, Koh M, Nawrocki CC, Travanty EA, et al. SARS-CoV-2 detection by rRT-PCR on self-collected anterior nares swabs or saliva compared with clinician-collected nasopharyngeal swabs - Denver and Atlanta, August-November, 2020. MedRxiv 2021;NA:no pagination. [DOI: ]
Marx 2021 (b) {published data only}
    1. Marx GE, Smith-Jeffcoat SE, Biggerstaff BJ, Koh M, Nawrocki CC, Travanty EA, et al. SARS-CoV-2 detection by rRT-PCR on self-collected anterior nares swabs or saliva compared with clinician-collected nasopharyngeal swabs - Denver and Atlanta, August-November, 2020. MedRxiv 2021;NA:no pagination. [DOI: ]
Marx 2021 (c) {published data only}
    1. Marx GE, Smith-Jeffcoat SE, Biggerstaff BJ, Koh M, Nawrocki CC, Travanty EA, et al. SARS-CoV-2 detection by rRT-PCR on self-collected anterior nares swabs or saliva compared with clinician-collected nasopharyngeal swabs - Denver and Atlanta, August-November, 2020. MedRxiv 2021;NA:no pagination. [DOI: ]
Marx 2021 (d) {published data only}
    1. Marx GE, Smith-Jeffcoat SE, Biggerstaff BJ, Koh M, Nawrocki CC, Travanty EA, et al. SARS-CoV-2 detection by rRT-PCR on self-collected anterior nares swabs or saliva compared with clinician-collected nasopharyngeal swabs - Denver and Atlanta, August-November, 2020. MedRxiv 2021;NA:no pagination. [DOI: ]
Marx 2021 (e) {published data only}
    1. Marx GE, Smith-Jeffcoat SE, Biggerstaff BJ, Koh M, Nawrocki CC, Travanty EA, et al. SARS-CoV-2 detection by rRT-PCR on self-collected anterior nares swabs or saliva compared with clinician-collected nasopharyngeal swabs - Denver and Atlanta, August-November, 2020. MedRxiv 2021;NA:no pagination. [DOI: ]
Marx 2021 (f) {published data only}
    1. Marx GE, Smith-Jeffcoat SE, Biggerstaff BJ, Koh M, Nawrocki CC, Travanty EA, et al. SARS-CoV-2 detection by rRT-PCR on self-collected anterior nares swabs or saliva compared with clinician-collected nasopharyngeal swabs - Denver and Atlanta, August-November, 2020. MedRxiv 2021;NA:no pagination. [DOI: ]
Marx 2021 (g) {published data only}
    1. Marx GE, Smith-Jeffcoat SE, Biggerstaff BJ, Koh M, Nawrocki CC, Travanty EA, et al. SARS-CoV-2 detection by rRT-PCR on self-collected anterior nares swabs or saliva compared with clinician-collected nasopharyngeal swabs - Denver and Atlanta, August-November, 2020. MedRxiv 2021;NA:no pagination. [DOI: ]
Marx 2021 (h) {published data only}
    1. Marx GE, Smith-Jeffcoat SE, Biggerstaff BJ, Koh M, Nawrocki CC, Travanty EA, et al. SARS-CoV-2 detection by rRT-PCR on self-collected anterior nares swabs or saliva compared with clinician-collected nasopharyngeal swabs - Denver and Atlanta, August-November, 2020. MedRxiv 2021;NA:no pagination. [DOI: ]
Marx 2021 (i) {published data only}
    1. Marx GE, Smith-Jeffcoat SE, Biggerstaff BJ, Koh M, Nawrocki CC, Travanty EA, et al. SARS-CoV-2 detection by rRT-PCR on self-collected anterior nares swabs or saliva compared with clinician-collected nasopharyngeal swabs - Denver and Atlanta, August-November, 2020. MedRxiv 2021;NA:no pagination. [DOI: ]
Marx 2021 (j) {published data only}
    1. Marx GE, Smith-Jeffcoat SE, Biggerstaff BJ, Koh M, Nawrocki CC, Travanty EA, et al. SARS-CoV-2 detection by rRT-PCR on self-collected anterior nares swabs or saliva compared with clinician-collected nasopharyngeal swabs - Denver and Atlanta, August-November, 2020. MedRxiv 2021;NA:no pagination. [DOI: ]
Marx 2021 (k) {published data only}
    1. Marx GE, Smith-Jeffcoat SE, Biggerstaff BJ, Koh M, Nawrocki CC, Travanty EA, et al. SARS-CoV-2 detection by rRT-PCR on self-collected anterior nares swabs or saliva compared with clinician-collected nasopharyngeal swabs - Denver and Atlanta, August-November, 2020. MedRxiv 2021;NA:no pagination. [DOI: ]
Marx 2021 (l) {published data only}
    1. Marx GE, Smith-Jeffcoat SE, Biggerstaff BJ, Koh M, Nawrocki CC, Travanty EA, et al. SARS-CoV-2 detection by rRT-PCR on self-collected anterior nares swabs or saliva compared with clinician-collected nasopharyngeal swabs - Denver and Atlanta, August-November, 2020. MedRxiv 2021;NA:no pagination. [DOI: ]
Marx 2021 (m) {published data only}
    1. Marx GE, Smith-Jeffcoat SE, Biggerstaff BJ, Koh M, Nawrocki CC, Travanty EA, et al. SARS-CoV-2 detection by rRT-PCR on self-collected anterior nares swabs or saliva compared with clinician-collected nasopharyngeal swabs - Denver and Atlanta, August-November, 2020. MedRxiv 2021;NA:no pagination. [DOI: ]
Marx 2021 (n) {published data only}
    1. Marx GE, Smith-Jeffcoat SE, Biggerstaff BJ, Koh M, Nawrocki CC, Travanty EA, et al. SARS-CoV-2 detection by rRT-PCR on self-collected anterior nares swabs or saliva compared with clinician-collected nasopharyngeal swabs - Denver and Atlanta, August-November, 2020. MedRxiv 2021;NA:no pagination. [DOI: ]
Marx 2021 (o) {published data only}
    1. Marx GE, Smith-Jeffcoat SE, Biggerstaff BJ, Koh M, Nawrocki CC, Travanty EA, et al. SARS-CoV-2 detection by rRT-PCR on self-collected anterior nares swabs or saliva compared with clinician-collected nasopharyngeal swabs - Denver and Atlanta, August-November, 2020. MedRxiv 2021;NA:no pagination. [DOI: ]
Marx 2021 (p) {published data only}
    1. Marx GE, Smith-Jeffcoat SE, Biggerstaff BJ, Koh M, Nawrocki CC, Travanty EA, et al. SARS-CoV-2 detection by rRT-PCR on self-collected anterior nares swabs or saliva compared with clinician-collected nasopharyngeal swabs - Denver and Atlanta, August-November, 2020. MedRxiv 2021;NA:no pagination. [DOI: ]
Marx 2021 (q) {published data only}
    1. Marx GE, Smith-Jeffcoat SE, Biggerstaff BJ, Koh M, Nawrocki CC, Travanty EA, et al. SARS-CoV-2 detection by rRT-PCR on self-collected anterior nares swabs or saliva compared with clinician-collected nasopharyngeal swabs - Denver and Atlanta, August-November, 2020. MedRxiv 2021;NA:no pagination. [DOI: ]
Marx 2021 (r) {published data only}
    1. Marx GE, Smith-Jeffcoat SE, Biggerstaff BJ, Koh M, Nawrocki CC, Travanty EA, et al. SARS-CoV-2 detection by rRT-PCR on self-collected anterior nares swabs or saliva compared with clinician-collected nasopharyngeal swabs - Denver and Atlanta, August-November, 2020. MedRxiv 2021;NA:no pagination. [DOI: ]
Matic 2021 {published data only}
    1. Matic N, Stefanovic A, Leung V, Lawson T, Ritchie G, Li L, et al. Practical challenges to the clinical implementation of saliva for SARS-CoV-2 detection. European Journal of Clinical Microbiology & Infectious Diseases 2021;40(2):447-50. - PMC - PubMed
McCormick‐Baw 2020 {published data only}
    1. McCormick-Baw C, Morgan K, Gaffney D, Cazares Y, Jaworski K, Byrd A, et al. Saliva as an alternate specimen source for detection of SARS-CoV-2 in symptomatic patients using Cepheid Xpert Xpress SARS-CoV-2. Journal of Clinical Microbiology 2020;58(8):e01109-2. - PMC - PubMed
McCulloch 2020 {published data only}
    1. McCulloch DJ, Kim AE, Wilcox NC, Logue JK, Greninger AL, Englund JA, et al. Comparison of unsupervised home self-collected midnasal swabs with clinician-collected nasopharyngeal swabs for detection of SARS-CoV-2 infection. JAMA Network Open 2020;3(7):e2016382. - PMC - PubMed
McLennan 2022 {published data only}
    1. McLennan K, Barton E, Lang C, Adams IR, McAllister G, Reijns MA, et al. User acceptability of saliva and gargle samples for identifying COVID-19 positive high-risk workers and household contacts. Diagnostic Microbiology and Infectious Disease 2022;104(1):115732. - PMC - PubMed
Melo Costa 2021 (a) {published data only}
    1. Melo Costa M, Benoit N, Dormoi J, Amalvict R, Gomez N, Tissot-Dupont H, et al. Salivette, a relevant saliva sampling device for SARS-CoV-2 detection. Journal of Oral Microbiology 2021;13(1):1920226. - PMC - PubMed
Melo Costa 2021 (b) {published data only}
    1. Melo Costa M, Benoit N, Dormoi J, Amalvict R, Gomez N, Tissot-Dupont H, et al. Salivette, a relevant saliva sampling device for SARS-CoV-2 detection. Journal of Oral Microbiology 2021;13(1):1920226. - PMC - PubMed
Melo Costa 2021 (c) {published data only}
    1. Melo Costa M, Benoit N, Dormoi J, Amalvict R, Gomez N, Tissot-Dupont H, et al. Salivette, a relevant saliva sampling device for SARS-CoV-2 detection. Journal of Oral Microbiology 2021;13(1):1920226. - PMC - PubMed
Mestdagh 2021 (a)[A] {published data only}
    1. Mestdagh P, Gillard M, Dhillon SK, Pirnay JP, Poels J, Hellemans J, et al. Evaluating diagnostic accuracy of saliva sampling methods for severe acute respiratory syndrome coronavirus 2 reveals differential sensitivity and association with viral load. Journal of Molecular Diagnostics 2021;23(10):1249-58. - PMC - PubMed
Mestdagh 2021 (a)[B] {published data only}
    1. Mestdagh P, Gillard M, Dhillon SK, Pirnay JP, Poels J, Hellemans J, et al. Evaluating diagnostic accuracy of saliva sampling methods for severe acute respiratory syndrome coronavirus 2 reveals differential sensitivity and association with viral load. Journal of Molecular Diagnostics 2021;23(10):1249-58. - PMC - PubMed
Mestdagh 2021 (b)[A] {published data only}
    1. Mestdagh P, Gillard M, Dhillon SK, Pirnay JP, Poels J, Hellemans J, et al. Evaluating diagnostic accuracy of saliva sampling methods for severe acute respiratory syndrome coronavirus 2 reveals differential sensitivity and association with viral load. Journal of Molecular Diagnostics 2021;23(10):1249-58. - PMC - PubMed
Mestdagh 2021 (b)[B] {published data only}
    1. Mestdagh P, Gillard M, Dhillon SK, Pirnay JP, Poels J, Hellemans J, et al. Evaluating diagnostic accuracy of saliva sampling methods for severe acute respiratory syndrome coronavirus 2 reveals differential sensitivity and association with viral load. Journal of Molecular Diagnostics 2021;23(10):1249-58. - PMC - PubMed
Mestdagh 2021 (c)[A] {published data only}
    1. Mestdagh P, Gillard M, Dhillon SK, Pirnay JP, Poels J, Hellemans J, et al. Evaluating diagnostic accuracy of saliva sampling methods for severe acute respiratory syndrome coronavirus 2 reveals differential sensitivity and association with viral load. Journal of Molecular Diagnostics 2021;23(10):1249-58. - PMC - PubMed
Mestdagh 2021 (c)[B] {published data only}
    1. Mestdagh P, Gillard M, Dhillon SK, Pirnay JP, Poels J, Hellemans J, et al. Evaluating diagnostic accuracy of saliva sampling methods for severe acute respiratory syndrome coronavirus 2 reveals differential sensitivity and association with viral load. Journal of Molecular Diagnostics 2021;23(10):1249-58. - PMC - PubMed
Mestdagh 2021 (d)[A] {published data only}
    1. Mestdagh P, Gillard M, Dhillon SK, Pirnay JP, Poels J, Hellemans J, et al. Evaluating diagnostic accuracy of saliva sampling methods for severe acute respiratory syndrome coronavirus 2 reveals differential sensitivity and association with viral load. Journal of Molecular Diagnostics 2021;23(10):1249-58. - PMC - PubMed
Mestdagh 2021 (d)[B] {published data only}
    1. Mestdagh P, Gillard M, Dhillon SK, Pirnay JP, Poels J, Hellemans J, et al. Evaluating diagnostic accuracy of saliva sampling methods for severe acute respiratory syndrome coronavirus 2 reveals differential sensitivity and association with viral load. Journal of Molecular Diagnostics 2021;23(10):1249-58. - PMC - PubMed
Mestdagh 2021 (e)[A] {published data only}
    1. Mestdagh P, Gillard M, Dhillon SK, Pirnay JP, Poels J, Hellemans J, et al. Evaluating diagnostic accuracy of saliva sampling methods for severe acute respiratory syndrome coronavirus 2 reveals differential sensitivity and association with viral load. Journal of Molecular Diagnostics 2021;23(10):1249-58. - PMC - PubMed
Mestdagh 2021 (e)[B] {published data only}
    1. Mestdagh P, Gillard M, Dhillon SK, Pirnay JP, Poels J, Hellemans J, et al. Evaluating diagnostic accuracy of saliva sampling methods for severe acute respiratory syndrome coronavirus 2 reveals differential sensitivity and association with viral load. Journal of Molecular Diagnostics 2021;23(10):1249-58. - PMC - PubMed
Mestdagh 2021 (f)[A] {published data only}
    1. Mestdagh P, Gillard M, Dhillon SK, Pirnay JP, Poels J, Hellemans J, et al. Evaluating diagnostic accuracy of saliva sampling methods for severe acute respiratory syndrome coronavirus 2 reveals differential sensitivity and association with viral load. Journal of Molecular Diagnostics 2021;23(10):1249-58. - PMC - PubMed
Mestdagh 2021 (f)[B] {published data only}
    1. Mestdagh P, Gillard M, Dhillon SK, Pirnay JP, Poels J, Hellemans J, et al. Evaluating diagnostic accuracy of saliva sampling methods for severe acute respiratory syndrome coronavirus 2 reveals differential sensitivity and association with viral load. Journal of Molecular Diagnostics 2021;23(10):1249-58. - PMC - PubMed
Migueres 2020 {published data only}
    1. Migueres M, Mengelle C, Dimeglio C, Didier A, Alvarez M, Delobel P, et al. Saliva sampling for diagnosing SARS-CoV-2 infections in symptomatic patients and asymptomatic carriers. Journal of Clinical Virology 2020;130:104580. - PMC - PubMed
Migueres 2021 (a) {published data only}
    1. Migueres M, Vellas C, Abravanel F, Da Silva I, Dimeglio C, Ferrer V, et al. Testing individual and pooled saliva samples for SARS-CoV-2 nucleic acid: a prospective study. Diagnostic Microbiology and Infectious Disease 2021;101(3):115478. - PMC - PubMed
Migueres 2021 (b) {published data only}
    1. Migueres M, Vellas C, Abravanel F, Da Silva I, Dimeglio C, Ferrer V, et al. Testing individual and pooled saliva samples for SARS-CoV-2 nucleic acid: a prospective study. Diagnostic Microbiology and Infectious Disease 2021;101(3):115478. - PMC - PubMed
Migueres 2021 (c) {published data only}
    1. Migueres M, Vellas C, Abravanel F, Da Silva I, Dimeglio C, Ferrer V, et al. Testing individual and pooled saliva samples for SARS-CoV-2 nucleic acid: a prospective study. Diagnostic Microbiology and Infectious Disease 2021;101(3):115478. - PMC - PubMed
Migueres 2021 (d) {published data only}
    1. Migueres M, Vellas C, Abravanel F, Da Silva I, Dimeglio C, Ferrer V, et al. Testing individual and pooled saliva samples for SARS-CoV-2 nucleic acid: a prospective study. Diagnostic Microbiology and Infectious Disease 2021;101(3):115478. - PMC - PubMed
Migueres 2021 (e) {published data only}
    1. Migueres M, Vellas C, Abravanel F, Da Silva I, Dimeglio C, Ferrer V, et al. Testing individual and pooled saliva samples for SARS-CoV-2 nucleic acid: a prospective study. Diagnostic Microbiology and Infectious Disease 2021;101(3):115478. - PMC - PubMed
Migueres 2021 (f) {published data only}
    1. Migueres M, Vellas C, Abravanel F, Da Silva I, Dimeglio C, Ferrer V, et al. Testing individual and pooled saliva samples for SARS-CoV-2 nucleic acid: a prospective study. Diagnostic Microbiology and Infectious Diseases 2021;101(3):115478. - PMC - PubMed
Miller 2020 {published data only}
    1. Miller M, Jansen M, Bisignano A, Mahoney S, Wechsberg C, Albanese N, et al. Validation of a self-administrable, saliva-based RT-qpcr test detecting SARS-CoV-2. MedRxiv 2020;NA:no pagination. [DOI: ]
Mora‐Aguilera 2022 (a) {published data only}
    1. Mora-Aguilera G, Martinez-Bustamante V, Acevedo-Sanchez G, Coria-Contreras JJ, Guzman-Hernandez E, Flores-Colorado OE, et al. Surveillance web system and mouthwash-saliva qPCR for labor ambulatory SARS-CoV-2 detection and prevention. International Journal of Environmental Research and Public Health 2022;19(3):551-7. - PMC - PubMed
Mora‐Aguilera 2022 (b) {published data only}
    1. Mora-Aguilera G, Martinez-Bustamante V, Acevedo-Sanchez G, Coria-Contreras JJ, Guzman-Hernandez E, Flores-Colorado OE, et al. Surveillance web system and mouthwash-saliva qPCR for labor ambulatory SARS-CoV-2 detection and prevention. International Journal of Environmental Research and Public Health 2022;19(3):551-7. - PMC - PubMed
Moreno‐Contreras 2020 {published data only}
    1. Moreno-Contreras J, Espinoza MA, Sandoval-Jaime C, Cantu-Cuevas MA, Baron-Olivares H, Ortiz-Orozco OD, et al. Saliva sampling and its direct lysis, an excellent option to increase the number of SARS-CoV-2 diagnostic tests in settings with supply shortages. Journal of Clinical Microbiology 2020;58(10):e01659-20. - PMC - PubMed
Nacher 2021 (a) {published data only}
    1. Nacher M, Mergeay-Fabre M, Blanchet D, Benois O, Pozl T, Mesphoule P, et al. Diagnostic accuracy and acceptability of molecular diagnosis of COVID-19 on saliva samples relative to nasopharyngeal swabs in tropical hospital and extra-hospital contexts: the COVISAL study. PloS One 2021;16(9):e0257169. - PMC - PubMed
Nacher 2021 (b) {published data only}
    1. Nacher M, Mergeay-Fabre M, Blanchet D, Benois O, Pozl T, Mesphoule P, et al. Diagnostic accuracy and acceptability of molecular diagnosis of COVID-19 on saliva samples relative to nasopharyngeal swabs in tropical hospital and extra-hospital contexts: the COVISAL study. PloS One 2021;16(9):e0257169. - PMC - PubMed
Otto 2020 {published data only}
    1. Otto MP, Darles C, Valero E, Benner P, Dutasta F, Janvier F. Posterior oropharyngeal salivafor the detection of SARS-CoV-2. Clinical Infectious Diseases 2020;71(11):2939-46. - PMC - PubMed
Pasomsub 2020 {published data only}
    1. Pasomsub E, Watcharananan SP, Boonyawat K, Janchompoo P, Wongtabtim G, Suksuwan W, et al. Saliva sample as a non-invasive specimen for the diagnosis of coronavirus disease-2019 (COVID-19): a cross-sectional study. Clinical Microbiology and Infection 2020;27(2):285.e1-285.e4. - PMC - PubMed
Patel 2020 {published data only}
    1. Patel MR, Carroll D, Ussery E, Whitham H, Elkins CA, Noble-Wang J, et al. Performance of oropharyngeal swab testing compared to nasopharyngeal swab testing for diagnosis of COVID-19 -United States, January-February 2020. Clinical Infectious Diseases 2020;72(3):482-5. - PMC - PubMed
Patriquin 2022 {published data only}
    1. Patriquin G, LeBlanc JJ, Gillis HA, McCracken GR, Pettipas JJ, Hatchette TF. Combined oropharyngeal/nares and nasopharyngeal swab sampling remain effective for molecular detection of SARS-CoV-2 Omicron variant. Journal of Medical Microbiology 2022;71(6):288. - PubMed
Pere 2020 {published data only}
    1. Pere H, Podglajen I, Wack M, Flamarion E, Mirault T, Goudot G, et al. Nasal swab sampling for SARS-CoV-2: a convenient alternative in times of nasopharyngeal swab shortage. Journal of Clinical Microbiology 2020;58(6):e00721-20. - PMC - PubMed
Pham 2020 {published data only}
    1. Pham J, Meyer S, Nguyen C, Williams A, Hunsicker M, McHardy I, et al. Performance characteristics of a high-throughput automated transcription-mediated amplification test for SARS-CoV-2 detection. Journal of Clinical Microbiology 2020;58(10):e01669-20. - PMC - PubMed
Potter 2022 {published data only}
    1. Potter RF, Ransom EM, Wallace MA, Johnson C, Kwon JH, Babcock HM, et al. Multiplatform assessment of saliva for SARS-CoV-2 molecular detection in symptomatic healthcare personnel and patients presenting to the emergency department. Journal of Applied Laboratory Medicine 2022;7(3):727-36. - PMC - PubMed
Procop 2020 {published data only}
    1. Procop GW, Shrestha NK, Vogel S, Van Sickle K, Harrington S, Rhoads DD, et al. A direct comparison of enhanced saliva to nasopharyngeal swab for the detection of SARS-CoV-2 in symptomatic patients. Journal of Clinical Microbiology 2020;58(11):e01946-20. - PMC - PubMed
Rajh 2021[A] {published data only}
    1. Rajh E, Sket T, Praznik A, Susjan P, Smid A, Urbancic D, et al. Robust saliva-based RNA extraction-free one-step nucleic acid amplification test for mass SARS-CoV-2 monitoring. Molecules (Basel, Switzerland) 2021;26(21):6617. - PMC - PubMed
Rajh 2021[B] {published data only}
    1. Rajh E, Sket T, Praznik A, Susjan P, Smid A, Urbancic D, et al. Robust saliva-based RNA extraction-free one-step nucleic acid amplification test for mass SARS-CoV-2 monitoring. Molecules (Basel, Switzerland) 2021;26(21):6617. - PMC - PubMed
Rajh 2021[C] {published data only}
    1. Rajh E, Sket T, Praznik A, Susjan P, Smid A, Urbancic D, et al. Robust saliva-based RNA extraction-free one-step nucleic acid amplification test for mass SARS-CoV-2 monitoring. Molecules (Basel, Switzerland) 2021;26(21):6617. - PMC - PubMed
Rao 2021(a) {published data only}
    1. Rao M, Rashid FA, Sabri F, Jamil NN, Seradja V, Abdullah NA, et al. COVID-19 screening test by using random oropharyngeal saliva. Journal of Medical Virology 2021;93(4):2461-6. - PMC - PubMed
Rao 2021 (b) {published data only}
    1. Rao M, Rashid FA, Sabri F, Jamil NN, Seradja V, Abdullah NA, et al. COVID-19 screening test by using random oropharyngeal saliva. Journal of Medical Virology 2021;93(4):2461-6. - PMC - PubMed
Sahajpal 2021 {published data only}
    1. Sahajpal NS, Mondal AK, Ananth S, Njau A, Ahluwalia P, Kota V, et al. SalivaAll: clinical validation of a sensitive test for saliva collected in healthcare and community settings with pooling utility for SARS-CoV-2 mass surveillance. Journal of Molecular Diagnostics 2021;23(7):788-95. - PMC - PubMed
Sahni 2021 {published data only}
    1. Sahni LC, Avadhanula V, Ortiz CS, Feliz KE, John RE, Brown CA, et al. Comparison of mid-turbinate and nasopharyngeal specimens for molecular detection of SARS-CoV-2 among symptomatic outpatients at a pediatric drive-through testing site. Journal of the Pediatric Infectious Diseases Society 2021;10(8):872-9. - PubMed
Salvatore 2021 {published data only}
    1. Salvatore PP, Bhattacharyya S, Christensen K, Tate JE, Kirking HL. Reduced sensitivity of SARS-CoV-2 PCR testing with single-nostril nasal swabs. Journal of Clinical Virology 2021;140:104852. - PMC - PubMed
Schwob 2020 {published data only}
    1. Schwob J-M, Miauton A, Petrovic D, Perdrix J, Senn N, Gouveia A, et al. Antigen rapid tests, nasopharyngeal PCR and saliva PCR to detect SARS-CoV-2: a prospective comparative clinical trial. PloS One 2023;18(2):e0282150. - PMC - PubMed
    1. Schwob JM, Miauton A, Petrovic D, Perdrix J, Senn N, Jaton K, et al. Antigen rapid tests, nasopharyngeal PCR and saliva PCR to detect SARS-CoV-2: a prospective comparative clinical trial. MedRxiv 2020;18(2):e0282150. - PMC - PubMed
Senok 2020 {published data only}
    1. Senok A, Alsuwaidi H, Atrah Y, Ayedi OA, Zahid JA, Han A, et al. Saliva as an alternative specimen for molecular COVID-19 testing in community settings and population-based screening. Infection and Drug Resistance 2020;13:3393-9. - PMC - PubMed
Skolimowska 2020 {published data only}
    1. Skolimowska K, Rayment M, Jones R, Madona P, Moore LS, Randell P. Non-invasive saliva specimens for the diagnosis of COVID-19: caution in mild outpatient cohorts with low prevalence. Clinical Microbiology and Infection 2020;26(12):1711-3. - PMC - PubMed
Smith‐Jeffcoat 2021 {published data only}
    1. Smith-Jeffcoat SE, Koh M, Hoffman A, Rebolledo PA, Schechter MC, Miller HK, et al. Effects of patient characteristics on diagnostic performance of self-collected samples for SARS-CoV-2 testing. Emerging Infectious Diseases 2021;27(8):2081-9. - PMC - PubMed
Teo 2021 (a) {published data only}
    1. Teo AK, Choudhury Y, Tan IB, Cher CY, Chew SH, Wan ZY, et al. Saliva is more sensitive than nasopharyngeal or nasal swabs for diagnosis of asymptomatic and mild COVID-19 infection. Scientific Reports 2021;11(1):3134. - PMC - PubMed
Teo 2021 (b) {published data only}
    1. Teo AK, Choudhury Y, Tan IB, Cher CY, Chew SH, Wan ZY, et al. Saliva is more sensitive than nasopharyngeal or nasal swabs for diagnosis of asymptomatic and mild COVID-19 infection. Scientific Reports 2021;11(1):3134. - PMC - PubMed
Torres 2021 {published data only}
    1. Torres M, Collins K, Corbit M, Ramirez M, Winters CR, Katz L, et al. Comparison of saliva and nasopharyngeal swab SARS-CoV-2 RT-qPCR testing in a community setting. Journal of Infection 2021;82(4):84-123. - PMC - PubMed
Tu 2020 [A] {published data only}
    1. Tu YP, Jennings R, Hart B, Cangelosi G, Wood R, Wehber K, et al. Patient-collected tongue, nasal, and mid-turbinate swabs for SARS-CoV-2 yield equivalent sensitivity to health care worker collected nasopharyngeal swabs. MedRxiv 2020;NA:no pagination. [DOI: ]
    1. Tu YP, Jennings R, Hart B, Cangelosi GA, Wood RC, Wehber K, et al. Swabs collected by patients or health care workers for SARS-CoV-2 testing. New England Journal of Medicine 2020;383(5):494-6. - PMC - PubMed
Tu 2020 [B] {published data only}
    1. Tu YP, Jennings R, Hart B, Cangelosi GA, Wood RC, Wehber K, et al. Swabs collected by patients or health care workers for SARS-CoV-2 testing. MedRxiv 2020;NA:no pagination. [DOI: ] - PMC - PubMed
    1. Tu YP, Jennings R, Hart B, Cangelosi GA, Wood RC, Wehber K, et al. Swabs collected by patients or health care workers for SARS-CoV-2 testing. New England Journal of Medicine 2020;383(5):494-6. - PMC - PubMed
Tu 2020 [C] {published data only}
    1. Tu YP, Jennings R, Hart B, Cangelosi G, Wood R, Wehber K, et al. Patient-collected tongue, nasal, and mid-turbinate swabs for SARS-CoV-2 yield equivalent sensitivity to health care worker collected nasopharyngeal swabs. MedRxiv [Preprint] 2020;NA:1-20.
    1. Tu YP, Jennings R, Hart B, Cangelosi GA, Wood RC, Wehber K, et al. Swabs collected by patients or health care workers for SARS-CoV-2 testing. New England Journal of Medicine 2020;383(5):494-6. - PMC - PubMed
Uddin 2021 {published data only}
    1. Uddin MK, Shirin T, Hossain ME, Alam AN, Ami JQ, Hasan R, et al. Diagnostic performance of self-collected saliva versus nasopharyngeal swab for the molecular detection of SARS-CoV-2 in the clinical setting. Microbiology Spectrum 2021;9(3):e0046821. - PMC - PubMed
Vaz 2020 {published data only}
    1. Vaz SN, Santana DS, Netto EM, Pedroso C, Wang WK, Santos FD, et al. Saliva is a reliable, non-invasive specimen for SARS-CoV-2 detection. Brazilian Journal of Infectious Diseases 2020;24(5):422-7. - PMC - PubMed
Vermeiren 2020 {published data only}
    1. Vermeiren C, Marchand-Senecal X, Sheldrake E, Bulir D, Smieja M, Chong S, et al. Comparison of Copan Eswab and Floqswab for COVID-19 diagnosis: working around a supply shortage. Journal of Clinical Microbiology 2020;58(6):e00669-20. - PMC - PubMed
Villar 2020 {published data only}
    1. Villar LM, Da Costa VD, Marques BC, Da Silva LL, Santos AC, Mendonca A, et al. Usefulness of saliva samples for detecting SARS-CoV-2 RNA among liver disease patients. Journal of Infection 2020;82(4):e4-e5. - PMC - PubMed
Vlek 2020 {published data only}
    1. Vlek AL, Wesselius TS, Achterberg R, Thijsen SF. Combined throat/nasal swab sampling for SARS-CoV-2 is equivalent to nasopharyngeal sampling. European Journal of Clinical Microbiology & Infectious Diseases 2020;40(1):193-5. - PMC - PubMed
Walker 2021 {published data only}
    1. Walker NF, Byrne RL, Howard A, Nikolaou E, Farrar M, Glynn S, et al. Detection of SARS-CoV-2 infection by saliva and nasopharyngeal sampling in frontline healthcare workers: an observational cohort study. MedRxiv 2021;NA:no pagination. [DOI: ] - PMC - PubMed
    1. Walker NF, Byrne RL, Howard A, Nikolaou E, Farrar M, Glynn S, et al. Detection of SARS-CoV-2 infection by saliva and nasopharyngeal sampling in frontline healthcare workers: an observational cohort study. PloS One 2023;18(1):e0280908. - PMC - PubMed
Wang 2020 {published data only}
    1. Wang X, Tan L, Wang X, Liu W, Lu Y, Cheng L, et al. Comparison of nasopharyngeal and oropharyngeal swabs for SARS-CoV-2 detection in 353 patients received tests with both specimens simultaneously. International Journal of Infectious Diseases 2020;94:107-9. - PMC - PubMed
Wehrhahn 2020 {published data only}
    1. Wehrhahn MC, Robson J, Brown S, Bursle E, Byrne S, New D, et al. Self-collection: an appropriate alternative during the SARS-CoV-2 pandemic. Journal of Clinical Virology 2020;128:104417. - PMC - PubMed
Williams 2020 {published data only}
    1. Williams E, Bond K, Zhang B, Putland M, Williamson DA. Saliva as a noninvasive specimen for detection of SARS-CoV-2. Journal of Clinical Microbiology 2020;58(8):e00776-20. - PMC - PubMed
Zander 2021 {published data only}
    1. Zander J, Scholtes S, Ottinger M, Kremer M, Kharazi A, Stadler V, et al. Self-collected gargle lavage allows reliable detection of SARS-CoV-2 in an outpatient setting. Microbiology Spectrum 2021;9(1):e0036121. - PMC - PubMed

References to studies excluded from this review

Alghounaim 2020 {published data only}
    1. Alghounaim M, Almazeedi S, Al Youha S, Papenburg J, Alowaish O, AbdulHussain G, et al. Low-cost polyester-tipped three-dimensionally printed nasopharyngeal swab for the detection of severe acute respiratory syndrome-related coronavirus 2 (SARS-cov-2). Journal of Clinical Microbiology 2020;58(11):e01668-20. - PMC - PubMed
Altamirano 2020 {published data only}
    1. Altamirano J, Govindarajan P, Blomkalns AL, Kushner LE, Stevens BA, Pinsky BA, et al. Assessment of sensitivity and specificity of patient-collected lower nasal specimens for sudden acute respiratory syndrome coronavirus 2 testing. JAMA Network Open 2020;3(6):e2012005. - PMC - PubMed
Avaniss‐Aghajani 2020 {published data only}
    1. Avaniss-Aghajani E, Sarkissian A, Fernando F, Avaniss-Aghajani A. Validation of the hologic Aptima unisex and multitest specimen collection kits used for endocervical and male urethral swab specimens (Aptima swabs) for collection of samples from SARS-CoV-2-infected patients. Journal of Clinical Microbiology 2020;58(8):e00753-20. - PMC - PubMed
Azzi 2020 {published data only}
    1. Azzi L, Baj A, Alberio T, Lualdi M, Veronesi G, Carcano G, et al. Rapid salivary test suitable for a mass screening program to detect SARS-CoV-2: a diagnostic accuracy study. Journal of Infection 2020;81(3):e75-8. - PMC - PubMed
Basso 2020 {published data only}
    1. Basso D, Aita A, Navaglia F, Franchin E, Fioretto P, Moz S, et al. SARS-CoV-2 RNA identification in nasopharyngeal swabs: issues in pre-analytics. Clinical Chemistry and Laboratory Medicine 2020;58(9):1579-86. - PubMed
Begum 2022a {published data only}
    1. Begum MN, Jubair M, Nahar K, Rahman S, Talha M, Sarker MS, et al. Factors influencing the performance of rapid SARS-CoV-2 antigen tests under field condition. Journal of Clinical Laboratory Analysis 2022;36(2):e24203. - PMC - PubMed
Bennett 2020 {published data only}
    1. Bennett I, Bulterys PL, Chang M, DeSimone JM, Fralick J, Herring M, et al. The rapid deployment of a 3D printed latticed nasopharyngeal swab for COVID-19 testing made using digital light synthesis. MedRxiv 2020;NA:no pagination. [DOI: 10.1101/2020.05.25.20112201] - DOI
Berenger 2020 {published data only}
    1. Berenger BM, Fonseca K, Schneider AR, Hu J, Zelyas N. Sensitivity of nasopharyngeal, nasal and throat swab for the detection of SARS-CoV-2. MedRxiv 2020;NA:1-10.
Berenger 2021 {published data only}
    1. Berenger BM, Conly JM, Fonseca K, Hu J, Louie T, Schneider AR, et al. Saliva collected in universal transport media is an effective, simple and high-volume amenable method to detect SARS-CoV-2. Clinical Microbiology and Infection 2021;27(4):656-7. - PMC - PubMed
Bergevin 2021 {published data only}
    1. Bergevin MA, Freppel W, Robert G, Ambaraghassi G, Aubry D, Haeck O, et al. Validation of saliva sampling as an alternative to oro-nasopharyngeal swab for detection of SARS-CoV-2 using unextracted rRT-PCR with the Allplex 2019-nCoV assay. Journal of Medical Microbiology 2021;70(8):001404. - PMC - PubMed
Beyene 2021 {published data only}
    1. Beyene GT, Alemu F, Kebede ES, Alemayehu DH, Seyoum T, Tefera DA, et al. Saliva is superior over nasopharyngeal swab for detecting SARS-CoV2 in COVID-19 patients. Scientific Reports 2021;11(1):22640. - PMC - PubMed
Bland 2021 {published data only}
    1. Bland J, Kavanaugh A, Hong LK, Perez O, Kadkol SS. A multiplex one-step RT-qPCR protocol to detect SARS-CoV-2 in NP/OP swabs and saliva. Current Protocols 2021;1(5):e145. - PMC - PubMed
Bloom 2021 {published data only}
    1. Bloom JS, Sathe L, Munugala C, Jones EM, Gasperini M, Lubock NB, et al. Swab-Seq: a high-throughput platform for massively scaled up SARS-CoV-2 testing. MedRxiv 2021;NA:no pagination. [DOI: ]
Braz‐Silva 2020 {published data only}
    1. Braz-Silva PH, Mamana AC, Romano CM, Felix AC, De Paula AV, Fereira NE, et al. Performance of at-home self-collected saliva and nasal-oropharyngeal swabs in the surveillance of COVID-19. Journal of Oral Microbiology 2020;13(1):1858002. - PMC - PubMed
Brotons 2020 {published data only}
    1. Brotons P, Perez-Arguello A, Launes C, Torrents F, Saucedo J, Claverol J, et al. Validation and implementation of a direct RT-qPCR method for rapid screening of SARS-CoV-2 infection by using non-invasive saliva samples. MedRxiv 2020;NA:no pagination. [DOI: ] - PMC - PubMed
Bulfoni 2021 {published data only}
    1. Bulfoni M, Sozio E, Marcon B, De Martino M, Cesselli D, De Carlo C, et al. Validation of a saliva-based test for the molecular diagnosis of SARS-C0V-2 infection. MedRxiv 2021;NA:no pagination. [DOI: ] - PMC - PubMed
Bulfoni 2022 {published data only}
    1. Bulfoni M, Sozio E, Marcon B, De Martino M, Cesselli D, De Carlo C, et al. Validation of a saliva-based test for the molecular diagnosis of SARS-CoV-2 infection. Disease Markers 2022;2022:6478434. - PMC - PubMed
Bundgaard 2021 {published data only}
    1. Bundgaard JS, Raaschou-Pedersen DT, Todsen T, Ringgaard A, Torp-Pedersen C, Von Buchwald C, et al. Danish citizens' preferences for at-home oropharyngeal/nasal SARS-CoV-2 specimen collection. International Journal of Infectious Diseases 2021;109:195-8. - PMC - PubMed
Byrne 2020 {published data only}
    1. Byrne RL, Kay GA, Kontogianni K, Aljayyoussi G, Brown L, Collins AM, et al. Saliva alternative to upper respiratory swabs for SARS-CoV-2 diagnosis. Emerging Infectious Diseases 2020;26(11):2770-1. - PMC - PubMed
    1. Byrne RL, Kay GA, Kontogianni K, Brown L, Collins AM, Cuevas LE, et al. Saliva offers a sensitive, specific and non-invasive alternative to upper respiratory swabs for SARS-CoV-2 diagnosis. MedRxiv 2020;NA:no pagination. [DOI: 10.1101/2020.05.25.20112201] - DOI - PMC - PubMed
Calame 2020 {published data only}
    1. Calame A, Mazza L, Renzoni A, Kaiser L, Schibler M. Sensitivity of nasopharyngeal, oropharyngeal, and nasal wash specimens for SARS-CoV-2 detection in the setting of sampling device shortage. European Journal of Clinical Microbiology & Infectious Diseases 2020;40(2):441-5. - PMC - PubMed
Callahan 2020 {published data only}
    1. Callahan C, Lee R, Lee G, Zulauf KE, Kirby JE, Arnaout R. Nasal-swab testing misses patients with low SARS-CoV-2 viral loads. MedRxiv 2020;NA:1-19.
Carmagnola 2021 {published data only}
    1. Carmagnola D, Pellegrini G, Canciani E, Henin D, Perrotta M, Forlanini F, et al. Saliva molecular testing for SARS-CoV-2 surveillance in two Italian primary schools. Children (Basel, Switzerland) 2021;8(7):544. - PMC - PubMed
Carvalho 2021 {published data only}
    1. Carvalho J, Lopes-Nunes J, Figueiredo J, Santos T, Miranda A, Riscado M, et al. Molecular beacon assay development for severe acute respiratory syndrome coronavirus 2 detection. Sensors (Basel, Switzerland) 2021;21(21):7015. - PMC - PubMed
Casati 2021 {published data only}
    1. Casati B, Verdi JP, Hempelmann A, Kittel M, Klaebisch AG, Meister B, et al. ADESSO detects SARS-CoV-2 and its variants: extensive clinical validation of an optimised CRISPR-Cas13-based COVID-19 test. MedRxiv 2021;NA:no pagination. [DOI: ]
Cassinari 2021 {published data only}
    1. Cassinari K, Alessandri-Gradt E, Chambon P, Charbonnier F, Gracias S, Beaussire L, et al. Assessment of multiplex digital droplet RT-PCR as a diagnostic tool for SARS-CoV-2 detection in nasopharyngeal swabs and saliva samples. Clinical Chemistry 2021;67(5):736-41. - PMC - PubMed
Caulley 2020 {published data only}
    1. Caulley L, Corsten M, Eapen L, Whelan J, Angel JB, Antonation K, et al. Salivary detection of COVID-19. Annals of Internal Medicine 2020;174(1):131-3. - PMC - PubMed
Chan 2020a {published data only}
    1. Chan JF, Yip CC, To KK, Tang TH, Wong SC, Leung KH, et al. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-polymerase chain reaction assay validated in vitro and with clinical specimens. Journal of Clinical Microbiology 2020;58(5):e00310-20. - PMC - PubMed
Chan 2020b {published data only}
    1. Chan RWY, Chan KC, Chan KYY, Lui GCY, Tsun JGS, Wong RYK, et al. SARS-CoV-2 detection by nasal strips: a superior tool for surveillance of pediatric populations. MedRxiv 2020;NA:no pagination. [DOI: ] - PMC - PubMed
Chapleau 2020 {published data only}
    1. Chapleau RR, Fries AC, Lisanby MW, Rhode MG, Salisbury R, Starr CR. Alternatives to viral transport medium for use in SARS-cov-2 sample preparation. Journal of Clinical and Diagnostic Research 2020;14(12):Lc07-10.
Chen 2020 {published data only}
    1. Chen C, Gao G, Xu Y, Pu L, Wang Q, Wang L, et al. SARS-cov-2-positive sputum and faeces after conversion of pharyngeal samples in patients with COVID-19. Annals of Internal Medicine 2020;172(12):832-4. - PMC - PubMed
Cheuk 2020 {published data only}
    1. Cheuk S, Wong Y, Tse H, Siu HK, Kwong TS, Chu MY, et al. Posterior oropharyngeal saliva for the detection of SARS-CoV-2. Clinical Infectious Diseases 2020;71(11):2939-46. - PMC - PubMed
Chivte 2021 {published data only}
    1. Chivte P, LaCasse Z, Seethi VDR, Bharti P, Bland J, Kadkol SS, et al. MALDI-ToF protein profiling as a potential rapid diagnostic platform for COVID-19. Journal of Mass Spectrometry and Advances in the Clinical Lab 2021;21:31-41. - PMC - PubMed
Chong 2020 {published data only}
    1. Chong CY, Kam KQ, Li J, Maiwald M, Loo LH, Nadua KD, et al. Saliva is not a useful diagnostic specimen in children with Coronavirus Disease 2019. Clinical Infectious Diseases 2020;73(9):e3144-5. - PMC - PubMed
Chotimah 2022 {published data only}
    1. Chotimah SN, Putra YE, JH Ng, Tijptaningrum A, Sahara NS, Arfianti E, et al. DNA Aptamer gold nanoparticle colorimetric diagnostic test kit of saliva samples for SARS-CoV-2 virus linked to mobile phone application (Aptamextm). MedRxiv 2022;NA:no pagination. [DOI: ]
Chu 2021 {published data only}
    1. Chu CY, Marais G, Opperman C, Doolabh D, Iranzadeh A, Marais C, et al. Improved performance of saliva for the detection of the B.1.351 variant in South Africa. MedRxiv 2021;NA:no pagination. [DOI: ] - PMC - PubMed
Clementino 2022 {published data only}
    1. Clementino M, Cavalcante KF, Viana VAF, Silva DO, Damasceno CR, Fernandes de Souza J, et al. Detection of SARS-CoV-2 in different human biofluids using the loop-mediated isothermal amplification assay: a prospective diagnostic study in Fortaleza, Brazil. Journal of Medical Virology 2022;94(9):4170-80. - PMC - PubMed
Comerlato 2022 {published data only}
    1. Comerlato J, Comerlato CB, Sant'Anna FH, Bessel M, Abreu CM, Wendland EM. Open-source real-time quantitative RT-PCR-based on a RNA standard for the assessment of SARS-CoV-2 viral load. Memorias do Instituto Oswaldo Cruz 2022;116:e210237. - PMC - PubMed
Connor 2022 {published data only}
    1. Connor MC, Copeland M, Curran T. Investigation of saliva, tongue swabs and buccal swabs as alternative specimen types to nasopharyngeal swabs for SARS-CoV-2 testing. Journal of Clinical Virology 2022;146:105053. - PMC - PubMed
Costa 2021 {published data only}
    1. Costa MM, Benoit N, Tissot-Dupont H, Million M, Pradines B, Granjeaud S, et al. Mouth washing impaired SARS-CoV-2 detection in saliva. Diagnostics (Basel, Switzerland) 2021;11(8):1509. - PMC - PubMed
Costeloe 2021 {published data only}
    1. Costeloe A, Samad MN, Babu S, Metz C. Comparison of tracheal vs nasopharyngeal secretions for SARS-CoV-2 RT-PCR testing in patients with tracheostomy. Otolaryngology and Head and Neck Surgery 2021;165(1):89-92. - PubMed
D'Andrea 2021 {published data only}
    1. D'Andrea EL, Cossu AM, Scrima M, Messina V, Iuliano P, Di Perna F, et al. Efficacy of unsupervised self-collected mid-turbinate floqswabs for the diagnosis of Coronavirus Disease 2019 (COVID-19). Viruses 2021;13(8):1663. - PMC - PubMed
De Ioris 2020 {published data only}
    1. De Ioris MA, Scarselli A, Ciofi Degli Atti ML, Rava L, Smarrazzo A, Concato C, et al. Dynamic viral severe acute respiratory syndrome Coronavirus-2 RNA shedding in children: preliminary data and clinical consideration from a Italian regional center. Journal of the Pediatric Infectious Diseases Society 2020;9(3):366-9. - PMC - PubMed
Delaney 2020 {published data only}
    1. Delaney M, Simpson J, Thomas B, Ralph C, Evangalista M, Moshgriz M, et al. The use of saliva as a diagnostic specimen for SARS CoV-2 molecular diagnostic testing for pediatric patients. MedRxiv 2020;NA:no pagination. [DOI: ]
De Marinis 2021 {published data only}
    1. De Marinis Y, Pesola AK, Soderlund Strand A, Norman A, Pernow G, Alden M, et al. Detection of SARS-CoV-2 by rapid antigen tests on saliva in hospitalized patients with COVID-19. Infection Ecology & Epidemiology 2021;11(1):1993535. - PMC - PubMed
De Marinis 2021a {published data only}
    1. De Marinis Y, Pesola AK, Soderlund Strand A, Norman A, Pernow G, Alden M, et al. Detection of SARS-CoV-2 by rapid antigen tests on saliva in hospitalized patients with COVID-19. Infection Ecology & Epidemiology 2021;11(1):1993535. - PMC - PubMed
De Oliveira 2022 {published data only}
    1. De Oliveira LPR, Cabral AD, Dos Santos Carmo AM, Duran AF, Fermino DM, Veiga GRL, et al. Alternative SARS-CoV-2 detection protocol from self-collected saliva for mass diagnosis and epidemiological studies in low-incoming regions. Journal of Virological Methods 2022;300(11):114382. - PMC - PubMed
De Santi 2021 {published data only}
    1. De Santi C, Jacob B, Kroich P, Doyle S, Ward R, Li B, et al. Concordance between PCR-based extraction-free saliva and nasopharyngeal swabs for SARS-CoV-2 testing. HRB Open Research 2021;4:85. - PMC - PubMed
Dhakad 2021 {published data only}
    1. Dhakad MS, Gogoi S, Kumari A, Singh AK, Jais MB, Prakash A, et al. Comparative evaluation of cost effective extraction free molecular technique for detection of SARS-CoV-2 with reference to standard VTM based RT-qPCR method. Iranian Journal of Microbiology 2021;13(6):748-56. - PMC - PubMed
Di Pietro 2020 {published data only}
    1. Capecchi E, Di Pietro GM, Luconi E, Testing Pediatric COVID-19. Is nasopharyngeal swab comparable with nasopharyngeal aspirate to detect SARS-CoV-2 in children? Pediatric Infectious Disease Journal 2020;39(9):e288-9. - PubMed
    1. Di Pietro GM, Capecchi E, Luconi E, Lunghi G, Bosis S, Bertolozzi G, et al. Diagnosis of SARS-CoV-2 in children: accuracy of nasopharyngeal swab compared to nasopharyngeal aspirate. MedRxiv 2020;NA:No pagination. [DOI: 10.1007/s10096-020-04131-z] - DOI - PMC - PubMed
Donato 2021 {published data only}
    1. Donato LJ, Trivedi VA, Stransky AM, Misra A, Pritt BS, Binnicker MJ, et al. Evaluation of the Cue Health point-of-care COVID-19 (SARS-CoV-2 nucleic acid amplification) test at a community drive-through collection center. Diagnostic Microbiology and Infectious Disease 2021;100(1):115307. - PMC - PubMed
Esteves 2022 {published data only}
    1. Esteves E, Mendes AK, Barros M, Figueiredo C, Andrade J, Capelo J, et al. Population wide testing pooling strategy for SARS-CoV-2 detection using saliva. PLoS One 2022;17(1):e0263033. - PMC - PubMed
Fabiani 2022 {published data only}
    1. Fabiani L, Mazzaracchio V, Moscone D, Fillo S, De Santis R, Monte A, et al. Paper-based immunoassay based on 96-well wax-printed paper plate combined with magnetic beads and colorimetric smartphone-assisted measure for reliable detection of SARS-CoV-2 in saliva. Biosensors & Bioelectronics 2022;200:113909. - PMC - PubMed
Fan 2020 {published data only}
    1. Fan J, Yu F, Wang X, Zou Q, Lou B, Xie G, et al. Hock-a-loogie saliva as a diagnostic specimen for SARS-CoV-2 by a PCR-based assay: a diagnostic validity study. Clinica Chimica Acta; International Journal of Clinical Chemistry 2020;511:177-80. - PMC - PubMed
Fang 2020 {published data only}
    1. Fang Z, Zhang Y, Hang C, Zhang W, Ai J, Li S. Comparisons of nucleic acid conversion time of SARS-CoV-2 of different samples in ICU and non-ICU patients. Journal of Infection 2020;81(1):147-78. - PMC - PubMed
Federman 2020 {published data only}
    1. Federman DG, Gupta S, Stack G, Campbell SM, Peaper DR, Dembry LM, et al. SARS-CoV-2 detection in setting of viral swabs scarcity: are MRSA swabs and viral swabs equivalent? PLoS One 2020;15(8):e0237127. - PMC - PubMed
Fougere 2021a {published data only}
    1. Fougere Y, Schwob JM, Miauton A, Hoegger F, Opota O, Jaton K, et al. Performance of RT-PCR on saliva specimens compared with nasopharyngeal swabs for the detection of SARS-CoV-2 in children: a prospective comparative clinical trial. Pediatric Infectious Disease Journal 2021;40(8):e300-4. - PubMed
Fowler 2020 {published data only}
    1. Fowler VL, Armson B, Gonzales JL, Wise EL, Howson EL, Vincent-Mistiaen Z, et al. A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the rapid detection of SARS-CoV-2 within nasopharyngeal and oropharyngeal swabs at Hampshire Hospitals NHS Foundation Trust. MedRxiv 2020;NA:no pagination. [DOI: ]
Freire‐Paspuel 2020 {published data only}
    1. Freire-Paspuel B, Vega-Marino P, Velez A, Castillo P, Gomez-Santos EE, Cruz M, et al. Cotton-tipped plastic swabs for SARS-CoV-2 RT-qPCR diagnosis to prevent supply shortages. Frontiers in Cellular and Infection Microbiology 2020;10:356. - PMC - PubMed
Fronza 2022 {published data only}
    1. Fronza F, Groff N, Martinelli A, Passerini BZ, Rensi N, Cortelletti I, et al. A community study of SARS-CoV-2 detection by RT-PCR in saliva: a reliable and effective method. Viruses 2022;14(2):313. - PMC - PubMed
Gable 2021 {published data only}
    1. Gable P, Huang JY, Gilbert SE, Bollinger S, Lyons AK, Sabour S, et al. A comparison of less invasive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostic specimens in nursing home residents - Arkansas, June-August 2020. Clinical Infectious Diseases 2021;73(Suppl 1):S58-64. - PMC - PubMed
Gan 2020 {published data only}
    1. Gan X, Hua L, Liu Q, Xie D, Wu Z, Xiong Y, et al. Clinical value of anal swab positive in COVID-19 patients. Chinese Journal of Microbiology and Immunolology 2020;40(7):489-94.
Georgas 2022 {published data only}
    1. Georgas A, Lampas E, Houhoula DP, Skoufias A, Patsilinakos S, Tsafaridis I, et al. ACE2-based capacitance sensor for rapid native SARS-CoV-2 detection in biological fluids and its correlation with real-time PCR. Biosensors & Bioelectronics 2022;202:114021. - PMC - PubMed
Girish 2021 {published data only}
    1. Girish P, Jayasankar P, Abhishek P, Sumeeta S, Gunvant P, Shalin P. Comparative analysis of the naso/oropharyngeal swab and oral bio-fluid (whole saliva) samples for the detection of SARS-CoV-2 using RT-qPCR. Indian Journal of Dental Research 2021;32(2):206-10. - PubMed
Goldfarb 2020 {published data only}
    1. Goldfarb DM, Tilley P, Al-Rawahi GN, Srigley J, Ford G, Pedersen H, et al. Self-collected saline gargle samples as an alternative to healthcare worker collected nasopharyngeal swabs for COVID-19 diagnosis in outpatients. MedRxiv 2020;59(4):e02427-20. - PMC - PubMed
Goodall 2022 {published data only}
    1. Goodall BL, LeBlanc JJ, Hatchette TF, Barrett L, Patriquin G. Investigating the sensitivity of nasal or throat swabs: combination of both swabs increases the sensitivity of SARS-CoV-2 rapid antigen tests. Microbiology Spectrum 2022;10(4):e0021722. - PMC - PubMed
Green 2020 {published data only}
    1. Green DA, Zucker J, Westblade LF, Whittier S, Rennert H, Velu P, et al. Clinical performance of SARS-CoV-2 molecular tests. Journal of Clinical Microbiology 2020;58(8):e00995-20. [DOI: 10.1128/jcm.00995-20] - DOI - PMC - PubMed
Grijalva 2020 {published data only}
    1. Grijalva CG, Zhu Y, Halasa NB, Kim A, Rolfes MA, Steffens A, et al. 432. High concordance between self-collected nasal swabs and saliva samples for detection of SARS-CoV-2. Open Forum Infectious Diseases 2020;7(Supplement 1):S283.
Guo 2020 {published data only}
    1. Guo WL, Jiang Q, Ye F, Li SQ, Hong C, Chen LY, et al. Effect of throat washings on detection of 2019 novel coronavirus. Clinical Infectious Diseases 2020;09:09. - PMC - PubMed
Guthrie 2020 {published data only}
    1. Guthrie JL, Chen AJ, Budhram DR, Cronin K, Peci A, Nelson P, et al. Characteristics of SARS-CoV-2 testing for rapid diagnosis of COVID-19 during the initial stages of a global pandemic. MedRxiv 2020;NA:no pagination. [DOI: ] - PMC - PubMed
Guthrie 2021 {published data only}
    1. Guthrie JL, Chen AJ, Budhram DR, Cronin K, Peci A, Nelson P, et al. Characteristics of SARS-CoV-2 testing for rapid diagnosis of COVID-19 during the initial stages of a global pandemic. PLoS One 2021;16(7):e0253941. - PMC - PubMed
Hagbom 2021 {published data only}
    1. Hagbom M, Carmona-Vicente N, Sharma S, Olsson H, Jamtberg M, Nilsdotter-Augustinsson A, et al. Evaluation of SARS-CoV-2 rapid antigen diagnostic tests for saliva samples. MedRxiv 2021;NA:no pagination. [DOI: ] - PMC - PubMed
Hamed 2020 {published data only}
    1. Hamed I, Shaban N, Nassar M, Cayir D, Love S, Curran MD, et al. ESICM lives 2020. Intensive Care Medicine Experimental 2020;8(Suppl 2):73. - PMC - PubMed
Han 2020 {published data only}
    1. Han MS, Seong MW, Kim N, Shin S, Cho SI, Park H, et al. Viral RNA load in mildly symptomatic and asymptomatic children with COVID-19, Seoul. Emerging Infectious Diseases 2020;26(10):2497-9. - PMC - PubMed
He 2020 {published data only}
    1. He J, Sun Y, Wang L, Wu J, Gong L, Hou S, et al. The virological and epidemiological features of COVID-19 in Anhui, China. Social Science Research Network 2020;NA:no pagination. [DOI: 10.2139/ssrn.3551351] - DOI
Hernandez 2021 {published data only}
    1. Hernandez MM, Banu R, Shrestha P, Patel A, Chen F, Cao LY, et al. Comparison of real-time RT-PCR and RT-PCR/MALDI-TOF methods for SARS-CoV-2 detection in saliva. American Journal of Clinical Pathology 2021;156(SUPPL 1):S9.
Hitzenbichler 2021 {published data only}
    1. Hitzenbichler F, Bauernfeind S, Salzberger B, Schmidt B, Wenzel JJ. Comparison of throat washings, nasopharyngeal swabs and oropharyngeal swabs for detection of SARS-CoV-2. Viruses 2021;13(4):653. - PMC - PubMed
Ho 2021 {published data only}
    1. Ho HL, Lin YY, Wang FY, Wu CH, Lee CL, Chou TY. Establishing diagnostic algorithms for SARS-CoV-2 nucleic acid testing in clinical practice. Journal of the Chinese Medical Association 2021;84(12):1120-5. - PubMed
Hoch 2021 {published data only}
    1. Hoch M, Vogel S, Eberle U, Kolberg L, Gruenthaler V, Fingerle V, et al. Feasibility and accuracy of a novel saliva sampling method for large-scale SARS-CoV-2 screening in children < 12 years of age. MedRxiv 2021;NA:no pagination. [DOI: ]
Hofman 2021 {published data only}
    1. Hofman P, Bordone O, Chamorey E, Benzaquen J, Schiappa R, Lespinet-Fabre V, et al. Setting-up a rapid SARS-CoV-2 genome assessment by next-generation sequencing in an academic hospital center (LPCE, Louis Pasteur Hospital, Nice, France). Frontiers in Medicine 2021;8:730577. - PMC - PubMed
Homza 2021 {published data only}
    1. Homza M, Zelena H, Janosek J, Tomaskova H, Jezo E, Kloudova A, et al. Performance of seven SARS-CoV-2 self-tests based on saliva, anterior nasal and nasopharyngeal swabs corrected for infectiousness in real-life conditions: a cross-sectional test accuracy study. Diagnostics (Basel, Switzerland) 2021;11(9):1567. - PMC - PubMed
Hu 2020 {published data only}
    1. Hu X, Deng Q, Li J, Chen J, Wang Z, Zhang X, et al. Development and clinical application of a rapid and sensitive loop-mediated isothermal amplification test for SARS-CoV-2 infection. MSphere 2020;5(4):e00808-20. - PMC - PubMed
Iftner 2022 {published data only}
    1. Iftner T, Iftner A, Pohle D, Martus P. Evaluation of the specificity and accuracy of SARS-CoV-2 rapid antigen self-tests compared to RT-PCR from 1015 asymptomatic volunteers. MedRxiv 2022;NA:no pagination. [DOI: ]
Igloi 2021 {published data only}
    1. Igloi Z, Velzing J, Huisman R, Geurtsvankessel C, Comvalius A, Jpelaar JI, et al. Clinical evaluation of the SD Biosensor SARS-CoV-2 saliva antigen rapid test with symptomatic and asymptomatic, non-hospitalized patients. PLoS One 2021;16(12):e0260894. - PMC - PubMed
Iwasaki 2020 {published data only}
    1. Iwasaki S, Fujisawa S, Nakakubo S, Kamada K, Yamashita Y, Fukumoto T, et al. Comparison of SARS-CoV-2 detection in nasopharyngeal swab and saliva. Journal of Infection 2020;81(2):e145-7. - PMC - PubMed
Jamal 2020 {published data only}
    1. Jamal AJ, Mozafarihashjin M, Coomes E, Powis J, Li AX, Paterson A, et al. Sensitivity of nasopharyngeal swabs and saliva for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical Infectious Diseases 2020;72(6):1064-6. - PMC - PubMed
Jayaprakasam 2021 {published data only}
    1. Jayaprakasam M, Aggarwal S, Mane A, Saxena V, Rao A, Bandopadhyay B, et al. RNA-extraction-free diagnostic method to detect SARS-CoV-2: an assessment from two states, India. Epidemiology and Infection 2021;149:e245.
Jiang 2020 {published data only}
    1. Jiang G, Ren X, Liu Y, Chen H, Liu W, Guo Z, et al. Application and optimization of RT-PCR in diagnosis of SARS-CoV-2 infection. MedRxiv 2020;NA:1-29.
Kalil 2021 {published data only}
    1. Kalil MN, Yusof W, Ahmed N, Fauzi MH, Bakar MA, Sjahid AS, et al. Performance validation of COVID-19 self-conduct buccal and nasal swabs RTK-antigen diagnostic kit. Diagnostics (Basel, Switzerland) 2021;11(12):2245. - PMC - PubMed
Kandel 2020 {published data only}
    1. Kandel C, Zheng J, McCready J, Serbanescu MA, Racher H, Desaulnier M, et al. Detection of SARS-CoV-2 from saliva as compared to nasopharyngeal swabs in outpatients. Viruses 2020;12(11):1314. - PMC - PubMed
Kandel 2021 {published data only}
    1. Kandel CE, Young M, Serbanescu MA, Powis JE, Bulir D, Callahan J, et al. Detection of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) in outpatients: a multicenter comparison of self-collected saline gargle, oral swab, and combined oral-anterior nasal swab to a provider collected nasopharyngeal swab. Infection Control and Hospital Epidemiology 2021;42(11):1340-4. - PMC - PubMed
Kerimov 2021 {published data only}
    1. Kerimov D, Tamminen P, Viskari H, Lehtimaki L, Aittoniemi J. Sampling site for SARS-CoV-2 RT-PCR - an intrapatient four-site comparison from Tampere, Finland. PLoS One 2021;16(11):e0260184. - PMC - PubMed
Kidd 2022 {published data only}
    1. Kidd SP, Burns D, Armson B, Beggs AD, Howson EL, Williams A, et al. RT-LAMP has high accuracy for detecting SARS-CoV-2 in saliva and naso/oropharyngeal swabs from asymptomatic and symptomatic individuals. MedRxiv 2022;NA:no pagination. [DOI: ] - PMC - PubMed
Kim 2020 {published data only}
    1. Kim JM, Kim HM, Lee EJ, Jo HJ, Yoon Y, Lee NJ, et al. Detection and isolation of SARS-CoV-2 in serum, urine, and stool specimens of COVID-19 patients from the Republic of Korea. Osong Public Health and Research Perspectives 2020;11(3):112-7. - PMC - PubMed
Kim 2020a {published data only}
    1. Kim SE, Lee JY, Lee A, Kim S, Park KH, Jung SI, et al. Viral load kinetics of SARS-CoV-2 infection in saliva in Korean patients: a prospective multi-center comparative study. Journal of Korean Medical Science 2020;35(31):e287. - PMC - PubMed
Kim 2022 {published data only}
    1. Kim S, Ryu H, Tai S, Pedowitz M, Rzasa JR, Pennachio DJ, et al. Real-time ultra-sensitive detection of SARS-CoV-2 by quasi-freestanding epitaxial graphene-based biosensor. Biosensors & Bioelectronics 2022;197:113803. - PMC - PubMed
Kinshella 2022 {published data only}
    1. Kinshella MW, Tilley P, Al-Rawahi GN, Srigley JA, Kayda I, Canes M, et al. Evaluation of observed and unobserved self-collection of saline gargle samples for the detection of SARS-CoV-2 in outpatients. Diagnostic Microbiology and Infectious Disease 2022;102(2):115566. - PMC - PubMed
Kitt 2020 {published data only}
    1. Kitt E, Sammons JS, Chiotos K, Coffin SE, Coffin SE, Ballantine A, et al. 425. The utility of paired upper and lower COVID-19 sampling in patients with artificial airways. Open Forum Infectious Diseases 2020;7(Supplement 1):S279.
Kiyasu 2021 {published data only}
    1. Kiyasu Y, Owaku M, Akashi Y, Takeuchi Y, Narahara K, Mori S, et al. Clinical evaluation of the novel rapid nucleic acid amplification point-of-care test (Smart Gene SARS-CoV-2) in the analysis of nasopharyngeal and anterior nasal samples. MedRxiv 2021;NA:no pagination. [DOI: ] - PMC - PubMed
Kiyasu 2022 {published data only}
    1. Kiyasu Y, Owaku M, Akashi Y, Takeuchi Y, Narahara K, Mori S, et al. Clinical evaluation of the rapid nucleic acid amplification point-of-care test (Smart Gene SARS-CoV-2) in the analysis of nasopharyngeal and anterior nasal samples. Journal of Infection and Chemotherapy 2022;28(4):543-7. - PMC - PubMed
Kiyasu 2022a {published data only}
    1. Kiyasu Y, Owaku M, Akashi Y, Takeuchi Y, Narahara K, Mori S, et al. Clinical evaluation of the rapid nucleic acid amplification point-of-care test (Smart Gene SARS-CoV-2) in the analysis of nasopharyngeal and anterior nasal samples. Journal of Infection and Chemotherapy 2022;28(4):543-7. - PMC - PubMed
Klein 2021a {published data only}
    1. Klein JAF, Kruger LJ, Tobian F, Gaeddert M, Lainati F, Schnitzler P, et al. Head-to-head performance comparison of self-collected nasal versus professional-collected nasopharyngeal swab for a WHO-listed SARS-CoV-2 antigen-detecting rapid diagnostic test. Medical Microbiology and Immunology 2021;210(4):181-6. - PMC - PubMed
Kobayashi 2021 {published data only}
    1. Kobayashi GS, Brito LA, Moreira DP, Suzuki AM, Hsia GS, Pimentel LF, et al. A novel RT-LAMP workflow for rapid salivary diagnostics of COVID-19 and effects of age, gender and time from symptom onset. MedRxiv 2021;NA:no pagination. [DOI: ] - PMC - PubMed
Kojima 2021 {published data only}
    1. Kojima N, Turner F, Slepnev V, Bacelar A, Deming L, Kodeboyina S, et al. Self-collected oral fluid and nasal swabs demonstrate comparable sensitivity to clinician collected nasopharyngeal swabs for Coronavirus Disease 2019 detection. Clinical Infectious Diseases 2021;73(9):e3106-9. - PMC - PubMed
Kritikos 2021 {published data only}
    1. Kritikos A, Caruana G, Brouillet R, Miroz JP, Abed-Maillard S, Stieger G, et al. Sensitivity of rapid antigen testing and RT-PCR performed on nasopharyngeal swabs versus saliva samples in COVID-19 hospitalized patients: results of a prospective comparative trial (RESTART). Microorganisms 2021;9(9):1910. - PMC - PubMed
Kujawski 2020 {published data only}
    1. Kujawski SA, Wong KK, Collins JP, Epstein L, Killerby ME, Midgley CM, et al. Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 (COVID-19) in the United States. Nature Medicine 2020;26(6):861-8. - PubMed
    1. Kujawski SA, Wong KK, Collins JP, Epstein L, Killerby ME, Midgley CM, et al. First 12 patients with Coronavirus disease 2019 (COVID-19) in the United States [D]. MedRxiv 2020;NA:1-21. - PubMed
Kwon 2021 {published data only}
    1. Kwon J, Ko E, Cho SY, Lee YH, Jun S, Lee K, et al. Bean extract-based gargle for efficient diagnosing COVID-19 at early-stage using rapid antigen tests: a clinical, prospective, diagnostic study. MedRxiv 2021;NA:no pagination. [DOI: ]
Lai 2020 {published data only}
    1. Lai CK, Chen Z, Lui G, Ling L, Li T, Wong MCS, et al. Prospective study comparing deep throat saliva with other respiratory tract specimens in the diagnosis of novel Coronavirus Disease 2019. Journal of Infectious Diseases 2020;222(10):1612-9. - PMC - PubMed
Lai 2021 {published data only}
    1. Lai CK, Lui GC, Chen Z, Cheung YY, Cheng KC, Leung AS, et al. Comparison of self-collected mouth gargle with deep-throat saliva samples for the diagnosis of COVID-19: mouth gargle for diagnosis of COVID-19. Journal of Infection 2021;83(4):496-522. - PMC - PubMed
Lalli 2021 {published data only}
    1. Lalli MA, Langmade JS, Chen X, Fronick CC, Sawyer CS, Burcea LC, et al. Rapid and extraction-free detection of SARS-CoV-2 from saliva by colorimetric reverse-transcription loop-mediated isothermal amplification. Clinical Chemistry 2021;67(2):415-24. - PMC - PubMed
Landaverde 2022 {published data only}
    1. Landaverde L, Turcinovic J, Doucette-Stamm L, Gonzales K, Platt J, Connor John H, et al. Comparison of Binaxnow TM and SARS-CoV-2 qRT-PCR detection of the Omicron variant from matched anterior nares swabs. MedRxiv 2022;NA:no pagination. [DOI: ] - PMC - PubMed
Lapierre 2021 {published data only}
    1. Grandjean Lapierre S, Bedwani S, DeBlois F, Fortin A, Zamorano Cuervo N, Zerouali K, et al. Clinical evaluation of in house produced 3D printed nasopharyngeal swabs for COVID-19 testing. MedRxiv 2021;NA:no pagination. [DOI: ] - PMC - PubMed
LeBlanc 2020 {published data only}
    1. LeBlanc JJ, Heinstein C, MacDonald J, Pettipas J, Hatchette TF, Patriquin G. A combined oropharyngeal/nares swab is a suitable alternative to nasopharyngeal swabs for the detection of SARS-CoV-2. Journal of Clinical Virology 2020;128:104442. - PMC - PubMed
LeBlanc 2021 {published data only}
    1. LeBlanc JJ, Pettipas J, Di Quinzio M, Hatchette TF, Patriquin G. Reliable detection of SARS-CoV-2 with patient-collected swabs and saline gargles: a three-headed comparison on multiple molecular platforms. Journal of Virological Methods 2021;295:114184. - PMC - PubMed
Levican‐Asenjo 2020 {published data only}
    1. Levican-Asenjo JE, Almonacid LI, Valenzuela G, Garcia T, Rojas L, Serrano E, et al. Viral shedding dynamics reveals sputum as a reliable and cost-saving specimen for SARS-CoV-2 diagnosis within the first 10 days since symptom onset: a prospective cohort study. MedRxiv 2020;NA:no pagination. [DOI: 10.1101/2020.08.30.20183889] - DOI
Li 2020 {published data only}
    1. Li L, Li X, Guo Z, Wang Z, Zhang K, Li C, et al. Influence of storage conditions on SARS-CoV-2 nucleic acid detection in throat swabs. Journal of Infectious Diseases 2020;222(2):203-5. - PMC - PubMed
Lin 2020 {published data only}
    1. Lin C, Xiang J, Yan M, Li H, Huang S, Shen C. Comparison of throat swabs and sputum specimens for viral nucleic acid detection in 52 cases of novel coronavirus (SARS-CoV-2)-infected pneumonia (COVID-19). Clinical Chemistry and Laboratory Medicine 2020;58(7):1089-94. - PubMed
Lin 2022 {published data only}
    1. Lin J, Frediani JK, Damhorst GL, Sullivan JA, Westbrook A, McLendon K, et al. Where is Omicron? Comparison of SARS-CoV-2 RT-PCR and antigen test sensitivity at commonly sampled anatomic sites over the course of disease. MedRxiv 2022;13(Supplement):S194.
Lindner 2021a {published data only}
    1. Lindner AK, Nikolai O, Kausch F, Wintel M, Hommes F, Gertler M, et al. Head-to-head comparison of SARS-CoV-2 antigen-detecting rapid test with self-collected nasal swab versus professional-collected nasopharyngeal swab. European Respiratory Journal 2021;57(4):2003961. - PMC - PubMed
Lindner 2021b {published data only}
    1. Lindner AK, Nikolai O, Rohardt C, Burock S, Hulso C, Bolke A, et al. Head-to-head comparison of SARS-CoV-2 antigen-detecting rapid test with professional-collected anterior nasal versus nasopharyngeal swab. MedRxiv 2021;NA:no pagination. [DOI: ] - PMC - PubMed
Lindner 2021c {published data only}
    1. Lindner AK, Nikolai O, Rohardt C, Kausch F, Wintel M, Gertler M, et al. SARS-CoV-2 patient self-testing with an antigen-detecting rapid test: a head-to-head comparison with professional testing. MedRxiv 2021;NA:no pagination. [DOI: ]
Lopez‐Martinez 2020 {published data only}
    1. Lopez-Martinez B, Guzman-Ortiz AL, Nevarez-Ramirez AJ, Parra-Ortega I, Olivar-Lopez VB, Angeles-Floriano T, et al. Saliva as a promising biofluid for SARS-CoV-2 detection during the early stages of infection. Boletin Medico del Hospital Infantil de Mexico 2020;77(5):228-33. - PubMed
Lu 2020 {published data only}
    1. Lu X, Wang L, Sakthivel SK, Whitaker B, Murray J, Kamili S, et al. US CDC real-time reverse transcription PCR panel for detection of severe acute respiratory syndrome Coronavirus 2. Emerging Infectious Diseases 2020;26(8):1654-65. - PMC - PubMed
Lui 2020 {published data only}
    1. Lui G, Ling L, Lai CK, Tso EY, Fung KS, Chan V, et al. Viral dynamics of SARS-CoV-2 across a spectrum of disease severity in COVID-19. Journal of Infection 2020;81(2):318-56. - PMC - PubMed
Lyu 2020 {published data only}
    1. Lyu L, Li L, Liu X, Xie T, Zhou P, Zheng B, et al. Analysis of novel coronavirus nucleic acid detection in different specimens of COVID-19 patients after treatment in Tianjin. Chinese Journal of Microbiology and Immunology 2020;40(6):405-9.
L’Helgouach 2020 {published data only}
    1. L'Helgouach N, Champigneux P, Schneider FS, Molina L, Espeut J, Alali M, et al. Easy COV-Lamp based rapid detection of SARS-CoV-2 in saliva. MedRxiv 2020;NA:no pagination. [DOI: ]
Mahmood 2021 {published data only}
    1. Mahmood K, Abbott M, Van Nostrand K, Bechara R, Gonzalez AV, Brucker A, et al. Low utilisation of bronchoscopy to assess COVID-19 respiratory infection: a multicenter experience. BMJ Open Respiratory Research 2021;8(1):e000962. - PMC - PubMed
Mak 2022 {published data only}
    1. Mak GCK, Ng AYY, Lam ETK, Chan RCW, Tsang DNC. Assessment of SARS-CoV-2 viral loads in combined nasal-and-throat swabs collected from COVID-19 individuals under the Universal Community Testing Programme in Hong Kong. Journal of Virological Methods 2022;300:114396. - PMC - PubMed
Malczynski 2020 {published data only}
    1. Malczynski M, Rezaeian S, Rios J, Dirnberger L, Polanco W, Zembower T, et al. Development of a protocol for detection of SARS-CoV-2 in sputum and endotracheal aspirates using Cepheid Xpert Xpress SARS-CoV-2. Access Microbiology 2020;2(12):acmi000176. - PMC - PubMed
Manzoor 2020 {published data only}
    1. Manzoor S. Comparison of oropharyngeal and nasopharyngeal swabs for detection of SARS-CoV-2 in patients with COVID-19. Chest 2020;158(4):2473a.
Masia 2021 {published data only}
    1. Masia M, Fernandez-Gonzalez M, Sanchez M, Carvajal M, Garcia JA, Gonzalo-Jimenez N, et al. Nasopharyngeal panbio COVID-19 antigen performed at point-of-care has a high sensitivity in symptomatic and asymptomatic patients with higher risk for transmission and older age. Open Forum Infectious Diseases 2021;8(3):ofab059. - PMC - PubMed
Masse 2021 {published data only}
    1. Masse S, Bonnet C, Vilcu AM, Benamar H, Swital M, Van der Werf S, et al. Are posterior oropharyngeal saliva specimens an acceptable alternative to nasopharyngeal sampling for the monitoring of SARS-CoV-2 in primary-care settings? Viruses 2021;13(5):761. - PMC - PubMed
Matic 2020 {published data only}
    1. Matic N, Lawson T, Ritchie G, Stefanovic A, Leung V, Champagne S, et al. Automated molecular testing of saliva for SARS-CoV-2 detection. MedRxiv 2020;NA:no pagination. [DOI: 10.1101/2020.08.11.20170613] - DOI - PMC - PubMed
Matic 2020a {published data only}
    1. Matic N, Stefanovic A, Leung V, Lawson T, Ritchie G, Li L, et al. Practical challenges to the clinical implementation of saliva for SARS-CoV-2 detection. MedRxiv 2020;NA:no pagination. [DOI: 10.1101/2020.08.27.20170589] - DOI - PMC - PubMed
Michalina 2022 {published data only}
    1. Montaño MA, Bemer MJ, Heller KB, Meisner A, Marfatia Z, Rechkina EA, et al. Performance of anterior nares and tongue swabs for nucleic acid, Nucleocapsid and Spike antigen testing for detecting SARS-CoV-2 against nasopharyngeal PCR and viral culture. International Journal of Infectious Diseases 2022;117:287-94. - PMC - PubMed
Miller 2022 {published data only}
    1. Miller EW, Lamberson CM, Akabari RR, Riddell SW, Middleton FA, Nasr MR, et al. Development and validation of two RT-qpcr diagnostic assays for detecting severe acute respiratory syndrome Coronavirus 2 genomic targets across two specimen types. Journal of Molecular Diagnostics 2022;24(4):294-308. - PMC - PubMed
Miranda‐Ortiz 2021 {published data only}
    1. Miranda-Ortiz H, Fernandez-Figueroa EA, Ruiz-Garcia EB, Munoz-Rivas A, Mendez-Perez A, Mendez-Galvan J, et al. Development of an alternative saliva test for diagnosis of SARS-CoV-2 using TRIzol: adapting to countries with lower incomes looking for a large-scale detection program. PLoS One 2021;16(8):e0255807. - PMC - PubMed
Mittal 2020 {published data only}
    1. Mittal A, Gupta A, Kumar S, Surjit M, Singh B, Soneja M, et al. Gargle lavage as a viable alternative to swab for detection of SARS-CoV-2. Indian Journal of Medical Research 2020;152(1 & 2):77-81. - PMC - PubMed
Mollaei 2020 {published data only}
    1. Mollaei HR, Afshar AA, Kalantar-Neyestanaki D, Fazlalipour M, Aflatoonian B. Comparison five primer sets from different genome region of COVID-1 for detection of virus infection by conventional RT-PCR. Iranian Journal of Microbiology 2020;12(3):185-93. - PMC - PubMed
Montano 2022 {published data only}
    1. Montano MA, Bemer MJ, Heller KB, Meisner A, Marfatia Z, Rechkina EA, et al. Performance of anterior nares and tongue swabs for nucleic acid, Nucleocapsid, and Spike antigen testing for detecting SARS-CoV-2 against nasopharyngeal PCR and viral culture. International Journal of Infectious Diseases 2022;117:287-94. - PMC - PubMed
Moore 2020a {published data only}
    1. Moore NM, Li H, Schejbal D, Lindsley J, Hayden MK. Comparison of two commercial molecular tests and a laboratory-developed modification of the CDC 2019-NCOV reverse transcriptase PCR assay for the detection of SARS-CoV-2. Journal of Clinical Microbiology 2020;58(8):e00938-20. - PMC - PubMed
Naito 2021 {published data only}
    1. Naito A, Kiyasu Y, Akashi Y, Sugiyama A, Michibuchi M, Takeuchi Y, et al. The evaluation of the utility of the GENECUBE HQ SARS-CoV-2 for anterior nasal samples and saliva samples with a new rapid examination protocol. PLoS One 2021;16(12):e0262159. - PMC - PubMed
Nikolai 2021 {published data only}
    1. Nikolai O, Rohardt C, Tobian F, Junge A, Corman VM, Jones TC, et al. Anterior nasal versus nasal mid-turbinate sampling for a SARS-CoV-2 antigen-detecting rapid test: does localisation or professional collection matter? Infectious Diseases 2021;53(12):947-52. - PMC - PubMed
Oba 2022 {published data only}
    1. Oba J, Taniguchi H, Sato M, Takanashi M, Yokemura M, Sato Y, et al. SARS-CoV-2 RT-qPCR testing of pooled saliva samples: a case study of 824 asymptomatic individuals and a questionnaire survey in Japan. PLoS One 2022;17(5):e0263700. - PMC - PubMed
Onsongo 2022 {published data only}
    1. Onsongo SN, Otieno K, Van Duijn S, Adams E, Omollo M, Odero IA, et al. Performance of a rapid antigen test for SARS-CoV-2 in Kenya. Diagnostic Microbiology and Infectious Disease 2022;102(2):115591. - PMC - PubMed
Paap 2022 {published data only}
    1. Paap KC, Van Loon AM, Koene FM, Van Buul LW, Jurriaans S, Smalbrugge M, et al. Clinical evaluation of single-swab sampling for rapid COVID-19 detection in outbreak settings in Dutch nursing homes. European Geriatric Medicine 2022;13(3):711-8. - PMC - PubMed
Paliksa 2021 {published data only}
    1. Paliksa S, Lopeta M, Belevicius J, Kurmauskaite V, Asmenaviciute I, Pereckaite L, et al. Saliva testing is a robust non-invasive method for SARS-CoV-2 RNA detection. Infection and Drug Resistance 2021;14:2943-51. - PMC - PubMed
Palmas 2020 {published data only}
    1. Palmas G, Moriondo M, Trapani S, Ricci S, Calistri E, Pisano L, et al. Nasal swab as preferred clinical specimen for COVID-19 testing in children. Pediatric Infectious Disease Journal 2020;39(9):e267-70. - PubMed
Pan 2020 {published data only}
    1. Pan D, Sze S, Rogers B, Bron J, Bird PW, Holmes CW, et al. Serial simultaneously self-swabbed samples from multiple sites show similarly decreasing SARS-CoV-2 loads in COVID-19 cases of differing clinical severity. Journal of Infection 2020;81(6):979-97. - PMC - PubMed
Peng 2020 {published data only}
    1. Peng L, Liu J, Xu W, Luo Q, Chen D, Lei Z, et al. SARS-CoV-2 can be detected in urine, blood, anal swabs and oropharyngeal swabs specimens. Journal of Medical Virology 2020;92(9):1676-80. - PMC - PubMed
Perkins 2022 {published data only}
    1. Perkins TA, Stephens M, Alvarez Barrios W, Cavany S, Rulli L, Pfrender ME. Performance of three tests for SARS-CoV-2 on a university campus estimated jointly with Bayesian latent class modeling. Microbiology Spectrum 2022;10(1):e0122021. - PMC - PubMed
Phan 2022 {published data only}
    1. Phan T, Boes S, McCullough M, Gribschaw J, Marsh J, Harrison LH, et al. Development of a one-step qualitative RT-PCR assay to detect the SARS-CoV-2 Omicron (B.1.1.529) variant in respiratory specimens. Journal of Clinical Microbiology 2022;60(3):e0002422. - PMC - PubMed
Pinninti 2020 {published data only}
    1. Pinninti S, Trieu C, Pati SK, Latting M, Cooper J, Seleme MC, et al. Comparing nasopharyngeal and mid-turbinate nasal swab testing for the identification of SARS-CoV-2. Clinical Infectious Diseases 2020;72(7):1253-5. - PMC - PubMed
Qiu 2022 {published data only}
    1. Qiu Y, Lu L, Halven A, Terrio R, Yuldelson S, Dougal N, et al. COVIDFast: a high-throughput and RNA extraction-free method for SARS-CoV-2 detection in swab (SwabFAST) or saliva (SalivaFAST). MedRxiv 2022;NA:no pagination. [DOI: ]
Radbel 2020 {published data only}
    1. Radbel J, Jagpal S, Roy J, Brooks A, Tischfield J, Sheldon M, et al. Detection of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) is comparable in clinical samples preserved in saline or viral transport medium. Journal of Molecular Diagnostics 2020;22(7):871-5. - PMC - PubMed
Rao 2020a {published data only}
    1. Rao M, Rashid FA, Sabri F, Jamil NN, Zain R, Hashim R, et al. Comparing nasopharyngeal swab and early morning saliva for the identification of SARS-CoV-2. Clinical Infectious Diseases 2020;72(9):e352-6. - PMC - PubMed
Rao 2020b {published data only}
    1. Rao S, Ambroggio L, Asturias EJ, Bajaj L, Corrado M, Inge T, et al. 408. Evaluation of the negative predictive value of the SARS-CoV-2 PCR respiratory assays in asymptomatic children undergoing surgery. Open Forum Infectious Diseases 2020;7(Supplement 1):S272.
Ren 2021 {published data only}
    1. Ren A, Sohaei D, Zacharioudakis I, Sigal GB, Stengelin M, Mathew A, et al. Ultrasensitive assay for saliva-based SARS-CoV-2 antigen detection. MedRxiv 2021;NA:no pagination. [DOI: ] - PubMed
Ricci 2021 {published data only}
    1. Ricci S, Lodi L, Citera F, Nieddu F, Moriondo M, Guarnieri V, et al. How home anterior self-collected nasal swab simplifies SARS-CoV-2 testing: new surveillance horizons in public health and beyond. Virology Journal 2021;18(1):59. - PMC - PubMed
Robinson 2022 {published data only}
    1. Robinson ML, Mirza A, Gallagher N, Boudreau A, Garcia L, Yu T, et al. Limitations of molecular and antigen test performance for SARS-CoV-2 in symptomatic and asymptomatic COVID-19 contacts. MedRxiv 2022;NA:no pagination. [DOI: ] - PMC - PubMed
Sarinoglu 2021 {published data only}
    1. Sarinoglu RC, Guneser D, Sengel BE, Korten V, Yagci AK. Evaluation of different respiratory samples and saliva for the detection of SARS CoV-2 RNA. Marmara Medical Journal 2021;34(1):51-6.
Sasikala 2021 {published data only}
    1. Sasikala M, Sadhana Y, Vijayasarathy K, Gupta A, Daram SK, Podduturi NCR, et al. Comparison of saliva with healthcare workers- and patient-collected swabs in the diagnosis of COVID-19 in a large cohort. BMC Infectious Diseases 2021;21(1):648. - PMC - PubMed
Savage 2021 {published data only}
    1. Savage HR, Finch L, Body R, Watkins RL, Hayward G, Cook E, et al. A prospective diagnostic evaluation of accuracy of self-taken and healthcare worker-taken swabs for rapid COVID-19 testing. MedRxiv 2021;NA:no pagination. [DOI: 10.1101/2021.12.06.21267356] - DOI - PMC - PubMed
Sawano 2021 {published data only}
    1. Sawano M, Takeshita K, Ohno H, Oka H. RT-PCR diagnosis of COVID-19 from exhaled breath condensate: a clinical study. Journal of Breath Research 2021;15(3):037103. - PubMed
Schrom 2022 {published data only}
    1. Schrom J, Marquez C, Petersen M, DeRisi J, Havlir D. Comparison of SARS-CoV-2 reverse transcriptase polymerase chain reaction and Binaxnow rapid antigen tests at a community site during an Omicron surge. Annals of Internal Medicine 2022;175(5):682-90. - PMC - PubMed
Schuit 2021 {published data only}
    1. Schuit E, Venekamp RP, Veldhuijzen IK, Van den Bijllaardt W, Pas SD, Stohr J, et al. Accuracy and usability of saliva and nasal rapid antigen self-testing for detection of SARS-CoV-2 infection in the general population: a head-to-head comparison. MedRxiv 2021;NA:no pagination. [DOI: 10.1101/2021.12.08.21267452] - DOI
Singh 2021 {published data only}
    1. Singh K, Arrode-Bruses G, Mansini M, Paden KA, Noto J, Shunevich U, et al. Microbiology - Infectious diseases including COVID-19. Clinical Chemistry and Laboratory Medicine 2021;59(s1):s637-757. - PubMed
Suh 2021 {published data only}
    1. Suh In B, Lim J, Kim Hyo S, Rhim G, Heebum K, Hana K, et al. Development and evaluation of Accupower(r) COVID-19 multiplex real-time RT-PCR kit and Accupower(r) SARS-CoV-2 multiplex real-time RT-PCR kit for SARS-CoV-2 detection in sputum, NPS/OPS, saliva and pooled samples. MedRxiv 2021;NA:no pagination. [DOI: 10.1101/2021.11.21.21264927] - DOI - PMC - PubMed
Sun 2021 {published data only}
    1. Sun Q, Li J, Ren H, Pastor L, Loginova Y, Wong J, et al. Saliva as a testing specimen with or without pooling for SARS-CoV-2 detection by multiplex RT-PCR test. PLoS One 2021;16(2):e0243183. - PMC - PubMed
Sutjipto 2020 {published data only}
    1. Sutjipto S, Lee PH, Tay JY, Mendis SM, Abdad MY, Marimuthu K, et al. The effect of sample site, illness duration, and the presence of pneumonia on the detection of SARS-CoV-2 by real-time reverse transcription PCR. Open Forum Infectious Diseases 2020;7(9):ofaa335. - PMC - PubMed
Takeuchi 2021 {published data only}
    1. Takeuchi Y, Akashi Y, Kiyasu Y, Terada N, Kurihara Y, Kato D, et al. Clinical evaluation of a combo rapid antigen test Quicknavi-flu + COVID-19 ag for simultaneous detection of SARS-CoV-2 and influenza viruses. MedRxiv 2021;NA:no pagination. [DOI: ]
Taki 2021 {published data only}
    1. Taki K, Yokota I, Fukumoto T, Iwasaki S, Fujisawa S, Takahashi M, et al. SARS-CoV-2 detection by fluorescence loop-mediated isothermal amplification with and without RNA extraction. Journal of Infection and Chemotherapy 2021;27(2):410-2. - PMC - PubMed
Tallmadge 2021 {published data only}
    1. Tallmadge RL, Laverack M, Cronk B, Venugopalan R, Martins M, Zhang XL, et al. Viral load and infectivity of SARS-CoV-2 in paired respiratory and oral specimens from symptomatic, asymptomatic or post-symptomatic individuals. MedRxiv 2021;NA:e0226421. - PMC - PubMed
Tan 2020 {published data only}
    1. Tan SY, Tey HL, Lim ET, Toh ST, Chan YH, Tan PT, et al. The accuracy of healthcare worker versus self-collected (2-in-1) oropharyngeal and bilateral mid-turbinate (OPMT) swabs and saliva samples for SARS-CoV-2. MedRxiv 2020;NA:no pagination. [DOI: 10.1101/2020.09.17.20197004] - DOI - PMC - PubMed
Tang 2020 {published data only}
    1. Tang X, Zhao S, He D, Yang L, Wang MH, Li Y, et al. Positive RT-PCR tests among discharged COVID-19 patients in Shenzhen, China. Infection Control and Hospital Epidemiology 2020;41(9):1110-2. - PMC - PubMed
Ter‐Ovanesyan 2021a {published data only}
    1. Ter-Ovanesyan D, Gilboa T, Lazarovits R, Rosenthal A, Yu X, Li JZ, et al. Ultrasensitive measurement of both SARS-CoV-2 RNA and antibodies from saliva. Analytical Chemistry 2021;93(13):5365-70. - PubMed
Ter‐Ovanesyan 2021b {published data only}
    1. Ter-Ovanesyan D, Gilboa T, Lazarovits R, Rosenthal A, Yu Xu G, Li Jonathan Z, et al. Ultrasensitive measurement of both SARS-CoV2 RNA and serology from saliva. MedRxiv 2021;NA:no pagination. [DOI: ] - PubMed
Therchilsen 2020 {published data only}
    1. Therchilsen JH, Von Buchwald C, Koch A, Dam Nielsen S, Rasmussen DB, Thudium RF, et al. Self-collected versus healthcare worker-collected swabs in the diagnosis of severe acute respiratory syndrome Coronavirus 2. Diagnostics (Basel, Switzerland) 2020;10(9):678. - PMC - PubMed
Thwe 2021 {published data only}
    1. Thwe PM, Ren P. Analysis of sputum/tracheal aspirate and nasopharyngeal samples for SARS-CoV-2 detection by laboratory-developed test and Panther Fusion system. Diagnostic Microbiology and Infectious Disease 2021;99(1):115228. - PMC - PubMed
To 2020 {published data only}
    1. To KK, Tsang OT, Chik-Yan Yip C, Chan KH, Wu TC, Chan JMC, et al. Consistent detection of 2019 novel Coronavirus in saliva. Clinical Infectious Diseases 2020;71(15):841-3. - PMC - PubMed
Trobajo‐Sanmartin 2021 {published data only}
    1. Trobajo-Sanmartin C, Adelantado M, Navascues A, Guembe MJ, Rodrigo-Rincon I, Castilla J, et al. Self-collection of saliva specimens as a suitable alternative to nasopharyngeal swabs for the diagnosis of SARS-CoV-2 by RT-qPCR. Journal of Clinical Medicine 2021;10(2):299. - PMC - PubMed
Truong 2020 {published data only}
    1. Truong M, Pfau B, McDermot E, Han PD, Brandstetter E, Richardson M, et al. Comparable specimen collection from both ends of at-home mid-turbinate swabs. MedRxiv 2020;NA:no pagination. [DOI: ] - PMC - PubMed
Truong 2021 {published data only}
    1. Truong M, Pfau B, McDermot E, Han PD, Brandstetter E, Richardson M, et al. Comparable specimen collection from both ends of at-home midturbinate swabs. Journal of Clinical Microbiology 2021;59(5):no pagination. [DOI: ] - PMC - PubMed
Unsaler 2021 {published data only}
    1. Unsaler S, Okan A, Tekin S, Hafiz AM, Gokler O, Altuntas O. Comparison of nasopharyngeal swab and nasopharyngeal aspiration in adults for SARS-CoV-2 identification using reverse transcription-polymerase chain reaction. Journal of Medical Virology 2021;93(12):6693-5. - PMC - PubMed
Uribe‐Alvarez 2021 {published data only}
    1. Uribe-Alvarez C, Lam Q, Baldwin DA, Chernoff J. Low saliva pH can yield false positives results in simple RT-LAMP-based SARS-CoV-2 diagnostic tests. PLoS One 2021;16(5):e0250202. - PMC - PubMed
Uwamino 2020 {published data only}
    1. Uwamino Y, Nagata M, Aoki W, Fujimori Y, Nakagawa T, Yokota H, et al. Accuracy and stability of saliva as a sample for reverse transcription PCR detection of SARS-CoV-2. Journal of Clinical Pathology 2020;74(1):67-8. - PubMed
Vander 2021 {published data only}
    1. Vander Schaaf NA, Fund AJ, Munnich BV, Zastrow AL, Fund EE, Senti TL, et al. Routine, cost-effective SARS-CoV-2 surveillance testing using pooled saliva limits viral spread on a residential college campus. Microbiology Spectrum 2021;9(2):e0108921. - PMC - PubMed
Venekamp 2021 {published data only}
    1. Venekamp RP, Veldhuijzen IK, Moons KG, Van den Bijllaardt W, Pas SD, Lodder EB, et al. Diagnostic accuracy of three prevailing rapid antigen tests for detection of SARS-CoV-2 infection in the general population: cross-sectional study. MedRxiv 2021;NA:no pagination. [DOI: ] - PMC - PubMed
Villota 2021 {published data only}
    1. Villota SD, Nipaz VE, Carrazco-Montalvo A, Hernandez S, Waggoner JJ, Ponce P, et al. Alternative RNA extraction-free techniques for the real-time RT-PCR detection of SARS-CoV-2 in nasopharyngeal swab and sputum samples. Journal of Virological Methods 2021;298:114302. - PMC - PubMed
Vogels 2021 {published data only}
    1. Vogels CBF, Watkins AE, Harden CA, Brackney DE, Shafer J, Wang J, et al. SalivaDirect: a simplified and flexible platform to enhance SARS-CoV-2 testing capacity. New York Medicine 2021;2(3):263-80 e6. - PMC - PubMed
Wang 2020a {published data only}
    1. Wang H, Liu Q, Hu J, Zhou M, Yu MQ, Li KY, et al. Nasopharyngeal swabs are more sensitive than oropharyngeal swabs for COVID-19 diagnosis and monitoring the SARS-CoV-2 load. Frontiers in Medicine 2020;7:334. - PMC - PubMed
Wei 2020 {published data only}
    1. Wei X-S, Wang X, Niu Y-R, Ye L-L, Peng W-B, Wang Z-H, et al. Diarrhea is associated with prolonged symptoms and viral carriage in Corona Virus disease 2019. Clinical Gastroenterology and Hepatology 2020;18(8):1753-9. [DOI: 10.1016/j.cgh.2020.04.030] - DOI - PMC - PubMed
Wolfl‐Duchek 2022 {published data only}
    1. Wolfl-Duchek M, Bergmann F, Jorda A, Weber M, Muller M, Seitz T, et al. Sensitivity and specificity of SARS-CoV-2 rapid antigen detection tests using oral, anterior nasal, and nasopharyngeal swabs: a diagnostic accuracy study. Microbiology Spectrum 2022;10(1):e0202921. - PMC - PubMed
Won 2021 {published data only}
    1. Won J, Kazan HH, Kwon J, Park M, Ergun MA, Ozcan S, et al. Ultimate COVID-19 detection protocol based on saliva sampling and qRT-PCR with risk probability assessment. Experimental Neurobiology 2021;30(1):13-31. - PMC - PubMed
Wong 2021 {published data only}
    1. Wong RC, Wong AH, Ho YI, Leung EC, Lai RW. Performance evaluation of Panther Fusion SARS-CoV-2 assay for detection of SARS-CoV-2 from deep throat saliva, nasopharyngeal, and lower-respiratory-tract specimens. Journal of Medical Virology 2021;93(3):1226-8. - PMC - PubMed
Woodall 2021 {published data only}
    1. Woodall CA, Thornton HV, Anderson EC, Ingle SM, Muir P, Vipond B, et al. Prospective study of the performance of parent-collected nasal and saliva swab samples, compared with nurse-collected swab samples, for the molecular detection of respiratory microorganisms. Microbiology Spectrum 2021;9(3):e0016421. - PMC - PubMed
Wu 2020a {published data only}
    1. Wu J, Liu J, Li S, Peng Z, Xiao Z, Wang X, et al. Detection and analysis of nucleic acid in various biological samples of COVID-19 patients. Travel Medicine and Infectious Disease 2020;37:101673. - PMC - PubMed
Wu 2020b {published data only}
    1. Wu Y, Guo C, Tang L, Hong Z, Zhou J, Dong X, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterology & Hepatology 2020;5(5):434-5. - PMC - PubMed
Wyllie 2020 {published data only}
    1. Wyllie AL, Fournier J, Casanovas-Massana A, Campbell M, Tokuyama M, Vijayakumar P, et al. Saliva or nasopharyngeal swab specimens for detection of SARS-CoV-2. New England Journal of Medicine 2020;383(13):1283-6. - PMC - PubMed
Wyllie 2022 {published data only}
    1. Wyllie AL, Premsrirut PK. Saliva RT-PCR sensitivity over the course of SARS-CoV-2 infection. JAMA 2022;327(2):182-3. - PubMed
Xiao 2020 {published data only}
    1. Xiao AT, YX T, Gao C, Zhu L, Zhang YJ, Zhang S. Dynamic profile of RT-PCR findings from 301 COVID-19 patients in Wuhan, China: a descriptive study. Journal of Clinical Virology 2020;127:104346. - PMC - PubMed
Xie 2020 {published data only}
    1. Xie C, Jiang L, Huang G, Pu H, Gong B, Lin H, et al. Comparison of different samples for 2019 novel Coronavirus detection by nucleic acid amplification tests. International Journal of Infectious Diseases 2020;93:264-7. - PMC - PubMed
Xu 2020 {published data only}
    1. Xu L, Zhang X, Song W, Sun B, Mu J, Dong X, et al. Conjunctival polymerase chain reaction-tests of 2019 novel Coronavirus in patients in Shenyang, China. MedRxiv 2020;NA:no pagination. [DOI: 10.1101/2020.02.23.20024935] - DOI
Ye 2020 (a) {published data only}
    1. Ye G, Li Y, Lu M, Chen S, Luo Y, Wang S, et al. Experience of different upper respiratory tract sampling strategies for detection of COVID-19. Journal of Hospital Infection 2020;105(1):1-2. - PMC - PubMed
    1. Ye G, Li Y, Lu M, Chen S, Luo Y, Wang S, et al. Standardized sampling by the same nurse could improve the positive rate and consistency of the throat swabs to detect COVID-19. Social Science Research Network 2020;NA:no pagination. [DOI: 10.2139/ssrn.3546084] - DOI
Yin 2022 {published data only}
    1. Yin N, Debuysschere C, Daubie V, Hildebrand M, Martin C, Curac S, et al. Evaluation and modelling of the performance of an automated SARS-CoV-2 antigen assay according to sample type, target population and epidemic trends. Diagnostics (Basel, Switzerland) 2022;12(2):447. - PMC - PubMed
Yokota 2021 {published data only}
    1. Yokota I, Shane PY, Okada K, Unoki Y, Yang Y, Iwasaki S, et al. A novel strategy for SARS-CoV-2 mass screening with quantitative antigen testing of saliva: a diagnostic accuracy study. Lancet Microbe 2021;2(8):e397-404. - PMC - PubMed
Young 2020 {published data only}
    1. Young BE, Ong SW, Kalimuddin S, Low JG, Tan SY, Loh J, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA 2020;323(15):1488-94. - PMC - PubMed
Yu 2020 {published data only}
    1. Yu C, Li L, Tuersun Y, Zhao X, Feng Q, Zhang T, et al. Oropharyngeal secretion as alternative for SARS-CoV-2 detection. Journal of Dental Research 2020;99(10):1199-205. - PubMed
Yuan 2020 {published data only}
    1. Yuan C, Zhu H, Yang Y, Cai X, Xiang F, Wu H, et al. Viral loads in throat and anal swabs in children infected with SARS-CoV-2. Emerging Microbes & Infections 2020;9(1):1233-7. - PMC - PubMed
Zhang 2022 {published data only}
    1. Zhang Q, Li J, Li Y, Tan G, Sun M, Shan Y, et al. SARS-CoV-2 detection using quantum dot fluorescence immunochromatography combined with isothermal amplification and CRISPR/Cas13a. Biosensors & Bioelectronics 2022;202:113978. - PMC - PubMed
Zheng 2020 {published data only}
    1. Zheng S, Yu F, Fan J, Zou Q, Xie G, Yang X, et al. Saliva as a diagnostic specimen for SARS-CoV-2 by a PCR-based assay: a diagnostic validity study. Social Science Research Network 2020;NA:no pagination. [DOI: 10.2139/ssrn.3543605] - DOI - PMC - PubMed
Zobrist 2022 {published data only}
    1. Zobrist S, Oliveira-Silva M, Vieira AM, Bansil P, Gerth-Guyette E, Leader BT, et al. Screening for SARS-CoV-2 in close contacts of individuals with confirmed infection: performance and operational considerations. MedRxiv 2022;NA:no pagination. [DOI: ] - PMC - PubMed

Additional references

Alford 2021
    1. Alford J. COVID-19 linked with wider set of symptoms than previously thought – REACT study; 28 September 2021. www.imperial.ac.uk/news/214693/covid-19-linked-with-wider-symptoms-than/ (accessed prior to 1 November 2024).
Arevalo‐Rodriguez 2020
    1. Arevalo-Rodriguez I, Buitrago-Garcia D, Simancas-Racines D, Zambrano-Achig P, Del Campo R, Ciapponi A, et al. False-negative results of initial RT-PCR assays for COVID-19: a systematic review. PLoS One 2020;15(12):e0242958. [DOI: 10.1371/journal.pone.0242958] - DOI - PMC - PubMed
Atieh 2021
    1. Atieh MA, Guirguis M, Alsabeeha NH, Cannon RD. The diagnostic accuracy of saliva testing for SARS-CoV-2: a systematic review and meta-analysis. Oral Diseases 2021;28(Suppl 2):2347-61. [DOI: 10.1111/odi.13934] - DOI - PMC - PubMed
Baden 2009
    1. Baden LR, Drazen JM, Kritek PA, Curfman GD, Morrissey S, Campion EW. H1N1 influenza A disease-information for health professionals [H1N1 influenza A disease-information for health professionals]. New England Journal of Medicine 2009;360:2666-2667. [PMID: doi: 10.1056/NEJMe0903992] - PubMed
Bastos 2021
    1. Bastos ML, Perlman-Arrow S, Menzies D, Campbell JR. The sensitivity and costs of testing for SARS-CoV-2 infection with saliva versus nasopharyngeal swabs: a systematic review and meta-analysis. Annals of Internal Medicine 2021;174(4):501-10. [DOI: 10.7326/M20-6569] - DOI - PMC - PubMed
Bhattarai 2018
    1. Bhattarai KR, Kim H-R, Chae H-J. Compliance with saliva collection protocol in healthy volunteers: strategies for managing risk and errors. International Journal of Medical Sciences 2018;15(8):823-31. [DOI: 10.7150/ijms.25146] - DOI - PMC - PubMed
Blackmore 2020
    1. Blackmore C. The role of population-wide saliva sampling for COVID-19. Rapid response to Covid-19: concerns persist about purpose, ethics, and effect of rapid testing in Liverpool. BMJ (Clinical Research Ed.) 2020;371(41):371. [DOI: 10.1136/bmj.m4690] [URL: www.bmj.com/content/371/bmj.m4690/rr] - DOI - PubMed
Block‐Wheeler 2023
    1. Block-Wheeler NR, Wei J, Weintraub MR, Liang J. Providing evidence for dogma: risk of epistaxis after COVID-19 nasal-screening swab. Otolaryngology Head and Neck Surgery 2023;169(1):47-54. [DOI: 10.1002/ohn.253] - DOI - PubMed
Bossuyt 2015
    1. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ (Clinical Research Ed.) 2015;351:h5527. [DOI: 10.1136/bmj.h5527] - DOI - PMC - PubMed
Brummer 2021
    1. Brummer LE, Katzenschlager S, Gaeddert M, Erdmann C, Schmitz S, Bota M, et al. Accuracy of novel antigen rapid diagnostics for SARS-CoV-2: a living systematic review and meta-analysis. PLoS Medicine 2021;18(8):e1003735. [DOI: 10.1371/journal.pmed.1003735] - DOI - PMC - PubMed
Butler‐Laporte 2021
    1. Butler-Laporte G, Lawandi A, Schiller I, Yao M, Dendukuri N, McDonald EG, et al. Comparison of saliva and nasopharyngeal swab nucleic acid amplification testing for detection of SARS-CoV-2: a systematic review and meta-analysis. JAMA Internal Medicine 2021;181(3):353-60. [DOI: 10.1001/jamainternmed.2020.8876] - DOI - PMC - PubMed
Centres for Disease Control 2021
    1. Centers for Disease Control. Interim Guidelines for Collecting and Handling of Clinical Specimens for COVID-19 Testing. www.cdc.gov/coronavirus/2019-ncov/lab/guidelines-clinical-specimens.html... (accessed 26 February 2021).
Cevik 2021
    1. Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet. Microbe 2021;2(1):e13-22. [DOI: 10.1016/S2666-5247(20)30172-5] - DOI - PMC - PubMed
COVID‐19 Open Access Project (COAP) 2020
    1. COVID-19 Open Access Project (COAP). Living Evidence on COVID-19. ispmbern.github.io/covid-19/living-review/ (accessed 17 February 2020).
Covidence [Computer program]
    1. Covidence. Version (accessed 30 April 2024). Melbourne, Australia: Veritas Health Innovation, 2024. Available at covidence.org.
Crozier 2021
    1. Crozier A, Dunning J, Rajan S, Semple MG, Buchan IE. Could expanding the COVID-19 case definition improve the UK's pandemic response? BMJ (Clinical Research Ed.) 2021;374:n1625. [DOI: 10.1136/bmj.n1625] - DOI - PubMed
DerSimonian 1986
    1. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical Trials 1986;7(3):177-88. [DOI: 10.1016/0197-2456(86)90046-2] - DOI - PubMed
Dinnes 2022
    1. Dinnes J, Sharma P, Berhane S, Van Wyk SS, Nyaaba N, Domen J, et al. Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. Cochrane Database of Systematic Reviews 2022, Issue 7. Art. No: CD013705. [DOI: 10.1002/14651858.CD013705.pub3] - DOI - PMC - PubMed
Ebrahimzadeh 2022
    1. Ebrahimzadeh S, Islam N, Dawit H, Salameh JP, Kazi S, Fabiano N, et al. Thoracic imaging tests for the diagnosis of COVID-19. Cochrane Database of Systematic Reviews 2022, Issue 5. Art. No: CD013639. [DOI: 10.1002/14651858.CD013639.pub5] - DOI - PMC - PubMed
ECDC 2021
    1. European Centre for Disease Prevention and Control. Considerations for the use of saliva as sample material for COVID-19 testing; 3 May 2021. www.ecdc.europa.eu/en/publications-data/considerations-use-saliva-sample... (accessed prior to 2 November, 2024).
ECDC 2022
    1. European Centre for Disease Prevention and Control. Diagnostic testing and screening for SARS-CoV-2. www.ecdc.europa.eu/en/covid-19/surveillance/testing-strategies (accessed 25th January 2023).
Fox 2022
    1. Fox T, Geppert J, Dinnes J, Scandrett K, Bigio J, Sulis G, et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database of Systematic Reviews 2022, Issue 11. Art. No: CD013652. [DOI: 10.1002/14651858.CD013652.pub2] - DOI - PMC - PubMed
Frazee 2018
    1. Frazee BW, Rodriguez-Hoces de la Guardia A, Alter H, Chen CG, Fuentes EL, Holzer AK, et al. Accuracy and discomfort of different types of intranasal specimen collection methods for molecular influenza testing in emergency department patients. Annals of Emergency Medicine 2018;71(4):509-17.e1. [DOI: 10.1016/j.annemergmed.2017.09.010] - DOI - PubMed
Ghafouri‐Fard 2020
    1. Ghafouri-Fard S, Noroozi R, Vafaee R, Branicki W, Pospiech E, Pyrc K, et al. Effects of host genetic variations on response to, susceptibility and severity of respiratory infections. Biomedicine & Pharmacotherapy 2020;128:110296. [DOI: 10.1016/j.biopha.2020.110296] - DOI - PMC - PubMed
Kivela 2021
    1. Kivela JM, Jarva H, Lappalainen M, Kurkela S. Saliva-based testing for diagnosis of SARS-CoV-2 infection: a meta-analysis. Journal of Medical Virology 2021;93(3):1256-8. [DOI: 10.1002/jmv.26613] - DOI - PubMed
Kucirka 2020
    1. Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in false-negative rate of reverse transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure. Annals of Internal Medicine 2020;173(4):262-7. [DOI: 10.7326/M20-1495] - DOI - PMC - PubMed
Lee 2021
    1. Lee RA, Herigon JC, Benedetti A, Pollock NR, Denkinger CM. Performance of saliva, oropharyngeal swabs, and nasal swabs for SARS-CoV-2 molecular detection: a systematic review and meta-analysis. Journal of Clinical Microbiology 2021;59(5):e02881-20. [DOI: 10.1128/JCM.02881-20] - DOI - PMC - PubMed
Levy 2021
    1. Levy JM, Frediani JK, Tyburski EA, Wood A, Figueroa J, Kempker RR, et al. Impact of repeated nasal sampling on detection and quantification of SARS-CoV-2. Scientific Reports 2021;11(1):14903. [DOI: 10.1038/s41598-021-94547-0] - DOI - PMC - PubMed
Mallett 2020
    1. Mallett S, Allen AJ, Graziadio S, Taylor SA, Sakai NS, Green K, et al. At what times during infection is SARS-CoV-2 detectable and no longer detectable using RT-PCR-based tests? A systematic review of individual participant data. BMC Medicine 2020;18(1):346. [DOI: 10.1186/s12916-020-01810-8] - DOI - PMC - PubMed
Mane 2022
    1. Mane A, Jain S, Jain A, Nema V, Kurle S, Saxena V, et al. Diagnostic performance of patient self-collected oral swab (tongue and cheek) in comparison with healthcare worker-collected nasopharyngeal swab for severe acute respiratory syndrome coronavirus-2 detection. Acta Pathologica, Microbiologica, et Immunologica Scandinavica 2022;130(11):671-7. [DOI: 10.1111/apm.13266] - DOI - PMC - PubMed
Mayers 2020
    1. Mayers C, Baker K. Impact of false-positives and false-negatives in the UK’s COVID-19 RT-PCR testing programme; 3 June 2020. assets.publishing.service.gov.uk/government/uploads/system/uploads/attac... (accessed prior to 2 November, 2024).
McLaughlin 2022
    1. McLaughlin HP, Worrell MC, Malone S, Dawson P, Maricque B, Halpin JL, et al. Acceptance of saliva-based specimen collection for SARS-CoV-2 testing among K-12 students, teachers, and staff. Public Health Reports 2022;137(3):557-63. [DOI: 10.1177/00333549221074395] - DOI - PMC - PubMed
Miller 2010
    1. Miller CS, Foley JD, Bailey AL, Campell CL, Humphries RL, Christodoulides N, et al. Current developments in salivary diagnostics. Biomarkers in Medicine 2010;4(1):171-89. [DOI: 10.2217/bmm.09.68] - DOI - PMC - PubMed
Niedrig 2018
    1. Niedrig M, Patel P, El Wahed AA, Schadler R, Yactayo S. Find the right sample: a study on the versatility of saliva and urine samples for the diagnosis of emerging viruses. BMC Infectious Diseases 2018;18(1):707. [DOI: 10.1186/s12879-018-3611-x] - DOI - PMC - PubMed
ONS 2020
    1. ONS. Coronavirus (COVID-19) Infection Survey pilot: England and Wales, UK: 21 August 2020. ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsan... (accessed 2020).
Plantamura 2021
    1. Plantamura J, Bousquet A, Otto MP, Bigaillon C, Legland AM, Delacour H, et al. Performances, feasibility and acceptability of nasopharyngeal swab, saliva and oral-self sampling swab for the detection of severe acute respiratory syndrome coronavirus 2. European Journal of Clinical Microbiology & Infectious Diseases 2021;40(10):2191-8. [DOI: 10.1007/s10096-021-04269-4] - DOI - PMC - PubMed
Riley 2020
    1. Riley S, Ainslie KEC, Eales O, Walters CE, Wang H, Atchison C, et al. Transient dynamics of SARS-CoV-2 as England exited national lockdown. medRxiv 2020;NA:no pagination. [DOI: 10.1101/2020.08.05.20169078] [URL: https://www.medrxiv.org/content/10.1101/2020.08.05.20169078v1.full.pdf] - DOI
Rucker 2008
    1. Rucker G, Schwarzer G, Carpenter JR, Schumacher M. Undue reliance on I2 in assessing heterogeneity may mislead. BMC Medical Research Methodology 2008;8:79. [DOI: 10.1186/1471-2288-8-79] - DOI - PMC - PubMed
Rutjes 2006
    1. Rutjes AW, Reitsma JB, Di Niso M, Smidt N, Van Rijn JC, Bossuyt PM. Evidence of bias and variation in diagnostic accuracy studies. Canadian Medical Association Journal 2006;174(4):469-76. [DOI: 10.1503/cmaj.050090] - DOI - PMC - PubMed
Sri 2020
    1. Sri Santosh T, Parmar R, Anand H, Srikanth K, Saritha M. A review of salivary diagnostics and its potential implication in detection of COVID-19. Cureus 2020;12(4):e7708. [DOI: 10.7759/cureus.7708] - DOI - PMC - PubMed
STATA [Computer program]
    1. Stata. Version 17. College Station, TX, USA: StataCorp, 2021. Available at www.stata.com.
Stegeman 2020
    1. Stegeman I, Ochodo EA, Guleid F, Holtman GA, Yang B, Davenport C, et al. Routine laboratory testing to determine if a patient has COVID-19. Cochrane Database of Systematic Reviews 2020, Issue 11. Art. No: CD013787. [DOI: 10.1002/14651858.CD013787] - DOI - PMC - PubMed
Struyf 2022
    1. Struyf T, Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Leeflang MM, et al. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19. Cochrane Database of Systematic Reviews 2022, Issue 5. Art. No: CD013665. [DOI: 10.1002/14651858.CD013665.pub3] - DOI - PMC - PubMed
Tsang 2022
    1. Tsang NN, So HC, Cowling BJ, Leung GM, Ip DK. Performance of saline and water gargling for SARS-CoV-2 reverse transcriptase PCR testing: a systematic review and meta-analysis. European Respiratory Review 2022;31(165):220014. [DOI: 10.1183/16000617.0014-2022] - DOI - PMC - PubMed
Uwamino 2021
    1. Uwamino Y, Nagata M, Aoki W, Fujimori Y, Nakagawa T, Yokota H, et al. Accuracy and stability of saliva as a sample for reverse transcription PCR detection of SARS-CoV-2. Journal of Clinical Pathology 2021;74(1):67-8. [DOI: 10.1136/jclinpath-2020-206972] - DOI - PubMed
Weiss 2020
    1. Weiss A, Jellingsoe M, Sommer M, Otto A. Spatial and temporal dynamics of SARS-CoV-2 in COVID-19 patients: a systematic review. EBioMedicine 2020;58:102916. [DOI: 10.1016/j.ebiom.2020.102916] - DOI - PMC - PubMed
Whiting 2011
    1. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine 2011;155(8):529-36. [DOI: 10.7326/0003-4819-155-8-201110180-00009] - DOI - PubMed
WHO 2019
    1. World Health Organization. Laboratory testing for coronavirus disease 2019 (‎COVID-19)‎ in suspected human cases: interim guidance; 2 March 2020. iris.who.int/handle/10665/331329 (accessed prior to 2 November, 2024).
WHO 2020a
    1. World Health Organization. Guidelines for the Collection of Clinical Specimens During Field Investigation of Outbreaks; 2000. www.who.int/iris/handle/10665/66348 (accessed 30 March, 2023).
WHO 2020b
    1. World Health Organization. Q&A on infection prevention and control for health care workers caring for patients with suspected or confirmed 2019-nCoV. healthalert.whofreebasics.org/sections/advice-healthcare-workers/qa-on-i... (accessed 2020).
WHO 2021
    1. World Health Organization. Antigen-detection in the diagnosis of SARS-CoV-2 infection; 6 October 2021. www.who.int/publications/i/item/antigen-detection-in-the-diagnosis-of-sa... (accessed prior to 2 November 2024).
WHO 2023
    1. World Health Organization. WHO Coronvirus (COVID-19) Dashboard. data.who.int/dashboards/covid19/cases (accessed 16 March 2023).
Wolfel 2020
    1. Wolfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Muller MA, et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020;581(7809):465-9. [DOI: 10.1038/s41586-020-2196-x] - DOI - PubMed
Yang 2020
    1. Yang Y, Yang M, Yuan J, Wang F, Wang Z, Li J, et al. Laboratory diagnosis and monitoring the viral shedding of SARS-CoV-2 infection. Innovation 2020;1(3):100061. [DOI: 10.1016/j.xinn.2020.100061] - DOI - PMC - PubMed
Yang 2021
    1. Yang B, Mallett S, Takwoingi Y, Davenport CF Hyde CJ, Whiting PF, et al. QUADAS-C: a tool for assessing risk of bias in comparative diagnostic accuracy studies. Annals of Internal Medicine 2021;174(11):1592-9. [DOI: 10.7326/M21-2234] - DOI - PubMed
Zimba 2021
    1. Zimba R, Romo ML, Kulkarni SG, Berry A, You W, Mirzayi C, et al. Patterns of SARS-CoV-2 testing preferences in a national cohort in the United States: latent class analysis of a discrete choice experiment. JMIR Public Health Surveillance 2021;7(12):e32846. [DOI: 10.2196/32846] - DOI - PMC - PubMed

References to other published versions of this review

Deeks 2020a
    1. Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Leeflang MM, Spijker R. Diagnosis of SARS-CoV-2 infection and COVID-19: accuracy of signs and symptoms; molecular, antigen, and antibody tests; and routine laboratory markers. Cochrane Database of Systematic Reviews 2020, Issue 4. Art. No: CD013596. [DOI: 10.1002/14651858.CD013596] - DOI