Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Feb;100(2):418-28.
doi: 10.1083/jcb.100.2.418.

Endothelial fenestral diaphragms: a quick-freeze, deep-etch study

Endothelial fenestral diaphragms: a quick-freeze, deep-etch study

E L Bearer et al. J Cell Biol. 1985 Feb.

Abstract

The route by which water, solutes, and macromolecules traverse the endothelial cell has long been a subject of study for both physiologists and cell biologists. Recent physiologic studies describe a slit-shaped pore (5.1-5.7-nm wide) as the communicating channel, although no channel of such dimensions has been visible in electron microscopic preparations. That this channel should be found within the fenestral diaphragm has long been suggested. In this report, by the aid of a new technique in tissue processing, we are able to demonstrate a possible morphologic correlate within the fenestral diaphragm of fenestrated capillaries. Quick-freezing and deep-etching of whole tissue blocks allows the sublimation of water from the endothelial pores, thus leaving the channels through the diaphragms empty and readily replicated with a platinum-carbon shadow. The structure of the diaphragm was revealed thus to be composed of radial fibrils of 7 nm in diameter, interweaving in a central mesh, and creating by their geometric distribution, wedge-shaped channels around the periphery of the pore. The average channel had a maximum arc length of 5.46 nm. Fenestrated endothelia from various tissues, including endocrine and exocrine pancreas, adrenal cortex, and kidney peritubular capillaries, displayed the same diaphragmatic structure, whereas continuous capillaries in muscle had no such diaphragm. Photographic augmentation of electron micrographs of etched replicas displayed marked enhancement at n = 8, confirming an octagonal symmetry of the fenestral diaphragm. Finally, cationic ferritin, clearly visible as a marker after etching, heavily bound to the flowerlike structure within the fenestral pore. We conclude that the fenestral diaphragm contains the structure responsible for fenestrated capillary permeability and that the communicating channel has the shape of a wedge.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Cell Biol. 1969 Apr;41(1):33-58 - PubMed
    1. J Ultrastruct Res. 1970 Jun;31(5-6):424-8 - PubMed
    1. J Ultrastruct Res. 1971 Sep;36(5):768-82 - PubMed
    1. J Cell Biol. 1972 May;53(2):365-92 - PubMed
    1. Q J Exp Physiol Cogn Med Sci. 1973 Jan;58(1):87-97 - PubMed

Publication types