Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Jan 1;231(1):91-101.
doi: 10.1002/cne.902310108.

Quantitative analysis of the dendrites of cat phrenic motoneurons stained intracellularly with horseradish peroxidase

Quantitative analysis of the dendrites of cat phrenic motoneurons stained intracellularly with horseradish peroxidase

W E Cameron et al. J Comp Neurol. .

Abstract

All the dendrites (N = 37) generated by four phrenic motoneurons were analyzed following intracellular injection of horseradish peroxidase. The dendritic arbors produced from each of these stem dendrites were studied in detail. The mean number of stem dendrites produced by a phrenic motoneuron was 9.7, their mean diameter was 6.0 micron, and their mean combined diameter was 58.3 micron. The length at which a phrenic motoneuronal dendrite terminated was 1,236 micron, with several end terminals extending more than 2 mm from the cell body. The mean value for the combined lengths of all segments originating from a single stem dendrite was 5.3 mm. A full spectrum of dendritic branching patterns was observed from simple (five unbranched) to complex, the latter producing up to ninth-order branches. Most terminal and nonterminal dendritic segments tapered, producing a mean diameter reduction of 34%, or approximately 9% per 100-micron length. All phrenic motoneurons exhibited a steady decrease in the combined dendritic parameter (sigma d3/2) with distance from the soma as a result of tapering and end-branch termination. The mean surface area and volume of a phrenic motoneuronal dendrite were 35.3 X 10(3) micron 2 and 25.9 X 10(3) micron 3, respectively. The dendrites constituted greater than 97% of the total phrenic motoneuronal surface area, with 75% of this area lying outside of a 300-micron radius from the cell body. The diameter of a stem dendrite was positively correlated with its combined dendritic length, number of terminal branches, dendritic surface area, and volume. Despite this strong correlation, the value of total dendritic surface area calculated using the power equation derived from the dendritic surface area versus stem dendritic diameter plot was not a consistent estimator of the total dendritic surface area directly measured for these four phrenic motoneurons. It is suggested that this inconsistency may be the result of a heterogeneity in the phrenic motoneuronal population and/or in the dendrites projecting to the different terminal fields.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources