Novel biocomposite of ionic cross-linked chitosan and acid-treated potato (Solanum tuberosum L.) peel agro-waste for highly efficient removal of methylene blue dye from water
- PMID: 39689797
- DOI: 10.1016/j.ijbiomac.2024.138742
Novel biocomposite of ionic cross-linked chitosan and acid-treated potato (Solanum tuberosum L.) peel agro-waste for highly efficient removal of methylene blue dye from water
Abstract
In this study, a biocomposite material (CS-OXA/PP-SA) composed of ionic crosslinked chitosan-oxalate (CS-OXA) and chemically modified lignocellulosic biomass (potato (Solanum tuberosum L.) peel-H2SO4 acid, PP-SA) was synthesized to serve as a bioadsorbent for removing methylene blue (MB) dye from aquatic systems. The research utilized response surface methodology (RSM) to evaluate the effects of three variables: CS-OXA/PP-SA dosage (0.02 to 0.08 g), pH (4 to 10), and duration (10 to 40 min) on MB dye adsorption. The investigation of the BET surface area of the CS-OXA/PP-SA composite revealed that it had a total pore volume of 0.0261 cm3/g, a surface area of 8.26 m2/g, and an average pore diameter of 12.67 nm. The XRD pattern shows a peak at 20.5°, confirming the crystalline CS within the composite, and another at 35°, attributed to the (004) crystal plane of cellulose in PP-SA. These peaks verify the successful integration of CS and PP-SA into the biocomposite. The optimal conditions identified include an adsorbent dose of 0.055 g, a solution pH of approximately 10, and a contact duration of 29.8 min. The optimal MB dye removal efficiency achieved under these parameters was 90.9 %. The results demonstrated that the adsorption of MB onto CS-OXA/PP-SA aligns closely with the pseudo-first-order kinetic model, suggesting a physisorption-dominated process. Additionally, the adsorption isotherm fitting to the Freundlich model highlights the heterogeneous nature of the adsorbent surface and the multilayer adsorption mode. The CS-OXA/PP-SA composite demonstrated a maximum adsorption capacity of 314.92 mg/g for MB dye. The adsorption mechanism is attributed to electrostatic interactions, hydrogen bonding, and n-π stacking interactions. The findings suggest that CS-OXA/PP-SA is a highly effective bioadsorbent for treating dye-contaminated wastewater. This study introduces a sustainable and eco-friendly approach to developing efficient adsorbents for the removal of cationic dyes from contaminated water. The biocomposite demonstrates high adsorption capacity, cost-effective production, and renewable sources, offering an innovative and practical solution for wastewater treatment while adhering to green chemistry principles.
Keywords: Adsorption; Chitosan; Lignocellulosic biomass; Methylene blue dye; Oxalate; Potato peel.
Copyright © 2024 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous