Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Aug 29;139(16):897-918.
doi: 10.1042/CS20242610.

Serpina3c deficiency promotes obesity-related hypertriglyceridemia and inflammation through activation of the Hif1α-glycolysis axis in adipose tissue

Affiliations

Serpina3c deficiency promotes obesity-related hypertriglyceridemia and inflammation through activation of the Hif1α-glycolysis axis in adipose tissue

Jiaqi Guo et al. Clin Sci (Lond). .

Abstract

Adipose tissue dysfunction leads to abnormal lipid metabolism and high inflammation levels. This research aims to explore the role of Serpina3c, which is highly expressed in adipocytes, in obesity-related hypertriglyceridemia and metaflammation. Serpina3c global knockout (KO) mice, adipocyte-specific Serpina3c overexpressing mice, Serpina3c knockdown (KD) mice, and hypoxia-inducible factor 1 alpha (Hif1α) KD mice were fed a high-fat diet (HFD) for 16 weeks to generate obesity-related hypertriglyceridemia mice models. In the present study, Serpina3c KO mice and adipocyte-specific Serpina3c KD mice exhibited more severe obesity-related hypertriglyceridemia and metaflammation under HFD conditions. Serpina3c KO epididymal white adipose tissue (eWAT) primary stromal vascular fraction (SVF)-derived adipocytes exhibited higher lipid (triglyceride and non-esterified fatty acid) levels and higher fatty acid synthase expression after palmitic acid (PA) stimulation. Adipocyte-specific Serpina3c overexpression in KO mice prevented the KO group phenotype. The RNA-seq and in vitro validation revealed that Hif1α and the glycolysis pathways were up-regulated in Serpina3c KD adipocytes, which were all validated by in vitro and in vivo reverse experiments. Co-immunoprecipitation (co-IP) provided evidence that Serpina3c bound nuclear factor erythroid 2-related factor 2 (Nrf2) regulates Hif1α. Nrf2 KD reduced Hif1α and Fasn expression, decreased lipid content, and reduced the extracellular acidification rate in Serpina3c KO adipocytes. Metabolomics revealed that lactic acid (LD) levels in eWAT were responsible for adipose-associated macrophage inflammation. In summary, Serpina3c inhibits the Hif1α-glycolysis pathway and reduces de novo lipogenesis (DNL) and LD secretion in adipocytes by binding to Nrf2, thereby improving HFD-induced lipid metabolism disorders and alleviating adipose tissue macrophage inflammation.

Keywords: adipose tissue; de novo lipogenesis; glycolysis; hif1α; hypertriglyceridemia; serpina3c.

PubMed Disclaimer

Similar articles

MeSH terms

Substances