Large language models can accurately populate Vascular Quality Initiative procedural databases using narrative operative reports
- PMID: 39694151
- DOI: 10.1016/j.jvs.2024.12.002
Large language models can accurately populate Vascular Quality Initiative procedural databases using narrative operative reports
Abstract
Objective: Participation in the Vascular Quality Initiative (VQI) provides important resources to surgeons, but the ability to do so is often limited by time and data entry personnel. Large language models (LLMs) such as ChatGPT (OpenAI) are examples of generative artificial intelligence products that may help bridge this gap. Trained on large volumes of data, the models are used for natural language processing and text generation. We evaluated the ability of LLMs to accurately populate VQI procedural databases using operative reports.
Methods: A single-center, retrospective study was performed using institutional VQI data from 2021 to 2023. The most recent procedures for carotid endarterectomy (CEA), endovascular aneurysm repair (EVAR), and infrainguinal lower extremity bypass (LEB) were analyzed using Versa, a HIPAA (Health Insurance Portability and Accountability Act)-compliant institutional version of ChatGPT. We created an automated function to analyze operative reports and generate a shareable VQI file using two models: gpt-35-turbo and gpt-4. Application of the LLMs was accomplished with a cloud-based programming interface. The outputs of this model were compared with VQI data for accuracy. We defined a metric as "unavailable" to the LLM if it was discussed by surgeons in <20% of operative reports.
Results: A total of 150 operative notes were analyzed, including 50 CEA, 50 EVAR, and 50 LEB. These procedural VQI databases included 25, 179, and 51 metrics, respectively. For all fields, gpt-35-turbo had a median accuracy of 84.0% for CEA (interquartile range [IQR]: 80.0%-88.0%), 92.2% for EVAR (IQR: 87.2%-94.0%), and 84.3% for LEB (IQR: 80.2%-88.1%). A total of 3 of 25, 6 of 179, and 7 of 51 VQI variables were unavailable in the operative reports, respectively. Excluding metric information routinely unavailable in operative reports, the median accuracy rate was 95.5% for each CEA procedure (IQR: 90.9%-100.0%), 94.8% for EVAR (IQR: 92.2%-98.5%), and 93.2% for LEB (IQR: 90.2%-96.4%). Across procedures, gpt-4 did not meaningfully improve performance compared with gpt-35 (P = .97, .85, and .95 for CEA, EVAR, and LEB overall performance, respectively). The cost for 150 operative reports analyzed with gpt-35-turbo and gpt-4 was $0.12 and $3.39, respectively.
Conclusions: LLMs can accurately populate VQI procedural databases with both structured and unstructured data, while incurring only minor processing costs. Increased workflow efficiency may improve center ability to successfully participate in the VQI. Further work examining other VQI databases and methods to increase accuracy is needed.
Keywords: Generative artificial intelligence; Large language models; Quality reporting.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Disclosures None.
Similar articles
-
The Transformative Potential of Large Language Models in Mining Electronic Health Records Data: Content Analysis.JMIR Med Inform. 2025 Jan 2;13:e58457. doi: 10.2196/58457. JMIR Med Inform. 2025. PMID: 39746191 Free PMC article.
-
Engineering of Generative Artificial Intelligence and Natural Language Processing Models to Accurately Identify Arrhythmia Recurrence.Circ Arrhythm Electrophysiol. 2025 Jan;18(1):e013023. doi: 10.1161/CIRCEP.124.013023. Epub 2024 Dec 16. Circ Arrhythm Electrophysiol. 2025. PMID: 39676642
-
Variation in hospital costs and reimbursement for endovascular aneurysm repair: A Vascular Quality Initiative pilot project.J Vasc Surg. 2017 Oct;66(4):1073-1082. doi: 10.1016/j.jvs.2017.02.039. Epub 2017 May 11. J Vasc Surg. 2017. PMID: 28502551
-
Large Language Model Applications for Health Information Extraction in Oncology: Scoping Review.JMIR Cancer. 2025 Mar 28;11:e65984. doi: 10.2196/65984. JMIR Cancer. 2025. PMID: 40153782 Free PMC article.
-
The Accuracy and Capability of Artificial Intelligence Solutions in Health Care Examinations and Certificates: Systematic Review and Meta-Analysis.J Med Internet Res. 2024 Nov 5;26:e56532. doi: 10.2196/56532. J Med Internet Res. 2024. PMID: 39499913 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous