Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr;32(4):2220-2232.
doi: 10.1016/j.acra.2024.11.021. Epub 2024 Dec 18.

Generative Adversarial Network Based Contrast Enhancement: Synthetic Contrast Brain Magnetic Resonance Imaging

Affiliations

Generative Adversarial Network Based Contrast Enhancement: Synthetic Contrast Brain Magnetic Resonance Imaging

Merve Solak et al. Acad Radiol. 2025 Apr.

Abstract

Rationale and objectives: Magnetic resonance imaging (MRI) is a vital tool for diagnosing neurological disorders, frequently utilising gadolinium-based contrast agents (GBCAs) to enhance resolution and specificity. However, GBCAs present certain risks, including side effects, increased costs, and repeated exposure. This study proposes an innovative approach using generative adversarial networks (GANs) for virtual contrast enhancement in brain MRI, with the aim of reducing or eliminating GBCAs, minimising associated risks, and enhancing imaging efficiency while preserving diagnostic quality.

Material and methods: In this study, 10,235 images were acquired in a 3.0 Tesla MRI scanner from 81 participants (54 females, 27 males; mean age 35 years, range 19-68 years). T1-weighted and contrast-enhanced images were obtained following the administration of a standard dose of a GBCA. In order to generate "synthetic" images for contrast-enhanced T1-weighted, a CycleGAN model, a sub-model of the GAN structure, was trained to process pre- and post-contrast images. The dataset was divided into three subsets: 80% for training, 10% for validation, and 10% for testing. TensorBoard was employed to prevent image deterioration throughout the training phase, and the image processing and training procedures were optimised. The radiologists were presented with a non-contrast input image and asked to choose between a real contrast-enhanced image and synthetic MR images generated by CycleGAN corresponding to this non-contrast MR image (Turing test).

Results: The performance of the CycleGAN model was evaluated using a combination of quantitative and qualitative analyses. For the entire dataset, in the test set, the mean square error (MSE) was 0.0038, while the structural similarity index (SSIM) was 0.58. Among the submodels, the most successful model achieved an MSE of 0.0053, while the SSIM was 0.8. The qualitative evaluation was validated through a visual Turing test conducted by four radiologists with varying levels of clinical experience.

Conclusion: The findings of this study support the efficacy of the CycleGAN model in generating synthetic contrast-enhanced T1-weighted brain MR images. Both quantitative and qualitative evaluations demonstrated excellent performance, confirming the model's ability to produce realistic synthetic images. This method shows promise in potentially eliminating the need for intravenous contrast agents, thereby minimising the associated risks of their use.

Keywords: Artificial Intelligence; Augmented Contrast; Gadolinium-Based Contrast Agents; Generative Adversarial Networks; MRI; Neuro Imaging; Synthetic Imaging; Virtual Contrast.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

LinkOut - more resources