Inhibition of glutaminase elicits senolysis in therapy-induced senescent melanoma cells
- PMID: 39695080
- PMCID: PMC11655860
- DOI: 10.1038/s41419-024-07284-3
Inhibition of glutaminase elicits senolysis in therapy-induced senescent melanoma cells
Abstract
The cyclin D1-Cyclin-Dependent Kinases 4 and 6 (CDK4/6) complex is crucial for the development of melanoma. We previously demonstrated that targeting CDK4/6 using small molecule inhibitors (CDK4/6i) suppresses BrafV600E melanoma growth in vitro and in vivo through induction of cellular senescence. However, clinical trials investigating CDK4/6i in melanoma have not yielded successful outcomes, underscoring the necessity to enhance the therapeutic efficacy of CDK4/6i. Accumulated research has shown that while senescence initially suppresses cell proliferation, a prolonged state of senescence eventually leads to tumor relapse by altering the tumor microenvironment, suggesting that removal of those senescent cells (in a process referred to as senolysis) is of clinical necessity to facilitate clinical response. We demonstrate that glutaminase 1 (GLS1) expression is specifically upregulated in CDK4/6i-induced senescent BrafV600E melanoma cells. Upregulated GLS1 expression renders BrafV600E melanoma senescent cells vulnerable to GLS1 inhibitor (GLS1i). Furthermore, we demonstrate that this senolytic approach targeting upregulated GLS1 expression is applicable even though those cells developed resistance to the BrafV600E inhibitor vemurafenib, a frequently encountered substantial clinical challenge to treating patients. Thus, this novel senolytic approach may revolutionize current CDK4/6i mediated melanoma treatment if melanoma cells undergo senescence prior to developing resistance to CDK4/6i. Given that we demonstrate that a low dose of vemurafenib induced senescence, which renders BrafV600E melanoma cells susceptible to GLS1i and recent accumulated research shows many cancer cells undergo senescence in response to chemotherapy, radiation, and immunotherapy, this senolytic therapy approach may prove applicable to a wide range of cancer types once senescence and GLS1 expression are induced.
© 2024. The Author(s).
Conflict of interest statement
Competing interests: The authors declare no competing interests. Ethical approval: All animal studies were conducted with the approval of the Case Western Reserve University Institutional Animal Care and Use Committee (Protocol number: 2021-0064).
Figures
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
