Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec 19:kwae466.
doi: 10.1093/aje/kwae466. Online ahead of print.

Multimorbidity patterns, sociodemographic characteristics, and mortality: Data science insights from low-resource settings

Affiliations

Multimorbidity patterns, sociodemographic characteristics, and mortality: Data science insights from low-resource settings

Juan Carlos Bazo-Alvarez et al. Am J Epidemiol. .

Abstract

Multimorbidity data is typically analysed by tallying disease counts, which overlooks nuanced relationships among conditions. We identified clusters of multimorbidity and subpopulations with varying risks and examined their association with all-cause mortality using a data-driven approach. We analysed 8-year follow-up data of people ≥35 years who were part of the CRONICAS Cohort Study, a multisite cohort from Peru. First, we used Partitioning Around Medoids and multidimensional scaling to identify multimorbidity clusters. We then estimated the association between multimorbidity clusters and all-cause mortality. Second, we identified subpopulations using finite mixture modelling. Our analysis revealed three clusters of chronic conditions: respiratory (cluster 1: bronchitis, COPD and asthma), lifestyle, hypertension, depression and diabetes (cluster 2), and circulatory (cluster 3: heart disease, stroke and peripheral artery disease). While only the cluster comprising circulatory diseases showed a significant association with all-cause mortality in the overall population, we identified two latent subpopulations (named I and II) exhibiting differential mortality risks associated with specific multimorbidity clusters. These findings underscore the importance of considering multimorbidity clusters and sociodemographic characteristics in understanding mortality risks. They also highlight the need for tailored interventions to address the unique needs of different subpopulations living with multimorbidity to reduce mortality risks effectively.

Keywords: cluster analysis; low-and-middle-income countries; mortality risk; multimorbidity patterns; sociodemographic characteristics; unsupervised machine learning.

PubMed Disclaimer

LinkOut - more resources