Swift induction of human spinal lower motor neurons and robust ALS cell screening via single-cell imaging
- PMID: 39706179
- PMCID: PMC11784480
- DOI: 10.1016/j.stemcr.2024.11.007
Swift induction of human spinal lower motor neurons and robust ALS cell screening via single-cell imaging
Abstract
This study introduces a novel method for rapidly and efficiently inducing human spinal lower motor neurons (LMNs) from induced pluripotent stem cells (iPSCs) to eventually elucidate the pathomechanisms of amyotrophic lateral sclerosis (ALS) and facilitate drug screening. Previous methods were limited by low induction efficiency, poor LMN purity, or labor-intensive induction and evaluation processes. Our protocol overcomes these challenges, achieving around 80% induction efficiency within just two weeks by combining a small molecule-based approach with transcription factor transduction. Moreover, to exclude non-LMN cells from the analysis, we utilized time-lapse microscopy and machine learning to analyze the morphology and viability of iPSC-derived LMNs on a single-cell basis, establishing an effective pathophysiological evaluation system. This rapid, efficient, and streamlined protocol, along with our single-cell-based evaluation method, enables large-scale analysis and drug screening using iPSC-derived motor neurons.
Keywords: ALS; disease modeling; iPSC; image analysis; machine learning; motor neuron; single-cell analysis.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests H.O. reports grants and personal fees from K Pharma Inc and SanBio Co. Ltd., outside the submitted work.
Figures
References
-
- Arai T., Hasegawa M., Akiyama H., Ikeda K., Nonaka T., Mori H., Mann D., Tsuchiya K., Yoshida M., Hashizume Y., Oda T. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 2006;351:602–611. doi: 10.1016/j.bbrc.2006.10.093. - DOI - PubMed
-
- Baxi E.G., Thompson T., Li J., Kaye J.A., Lim R.G., Wu J., Ramamoorthy D., Lima L., Vaibhav V., Matlock A., et al. Answer ALS, a large-scale resource for sporadic and familial ALS combining clinical and multi-omics data from induced pluripotent cell lines. Nat. Neurosci. 2022;25:226–237. doi: 10.1038/s41593-021-01006-0. - DOI - PMC - PubMed
-
- Campbell B.C., Nabel E.M., Murdock M.H., Lao-Peregrin C., Tsoulfas P., Blackmore M.G., Lee F.S., Liston C., Morishita H., Petsko G.A. mGreenLantern: a bright monomeric fluorescent protein with rapid expression and cell filling properties for neuronal imaging. Proc. Natl. Acad. Sci. USA. 2020;117:30710–30721. doi: 10.1073/pnas.2000942117. - DOI - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous
