Screening and engineering of lycopene-producing strain Rhodococcus jostii for bio-upcycling of poly(ethylene terephthalate) waste
- PMID: 39708736
- DOI: 10.1016/j.scitotenv.2024.178168
Screening and engineering of lycopene-producing strain Rhodococcus jostii for bio-upcycling of poly(ethylene terephthalate) waste
Abstract
Poly(ethylene terephthalate) (PET) is a widely used plastic, but its improper disposal has caused serious environmental pollution. The development of bioconversion for PET waste into high-value chemicals has gained significant attention as an innovative solution. In this study, a novel guided screening strategy involving mixed-bacteria fermentation and partitioned purification (MBF) was proposed to first successful isolate Rhodococcus jostii LETBE 8896, a strain capable of naturally producing 4 μg/L of lycopene from PET hydrolysate. Transcriptomic analysis identified the methylerythritol 4-phosphate (MEP) pathway as key to lycopene biosynthesis, with IspG identified as a critical regulatory enzyme. R. jostii with ispG overexpression enhanced lycopene production, with 819 μg/L in the simulated PET hydrolysate and 650 μg/L in the PET hydrolysate. Additionally, the use of butylated hydroxytoluene (BHT) as an antioxidant significantly improved lycopene production at 1 L scale level, achieving a maximum yield of 1865 μg/L with a molar conversion rate of 50.36 % from the PET hydrolysate, the highest reported for PET hydrolysate to date. These findings highlight the dual potential of R. jostii as a chassis strain for high-value chemical production and as a sustainable solution for PET upcycling. This study provides a novel approach to plastic waste management, contributing to the circular economy and global sustainability goals.
Keywords: Bioconversion; Lycopene; PET waste; Rhodococcus jostii; Upcycling.
Copyright © 2024 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.