Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Feb 10:670:125118.
doi: 10.1016/j.ijpharm.2024.125118. Epub 2024 Dec 20.

Advanced transdermal drug delivery system: A comprehensive review of microneedle technologies, novel designs, diverse applications, and critical challenges

Affiliations
Review

Advanced transdermal drug delivery system: A comprehensive review of microneedle technologies, novel designs, diverse applications, and critical challenges

Hiep X Nguyen et al. Int J Pharm. .

Abstract

Transdermal drug delivery presents numerous advantages over conventional administration routes, including non-invasiveness, enhanced patient adherence, circumvention of hepatic first-pass metabolism, self-administration capabilities, controlled release, and increased bioavailability. Nevertheless, the barrier function of stratum corneum limits this strategy to molecules possessing requisite physicochemical attributes. To expand the field of transdermal delivery, researchers have pioneered physical enhancement techniques, with micron-sized needles emerging as a particularly promising platform for the transdermal and intradermal delivery of therapeutic agents across a spectrum of molecular sizes. Microneedles function by disrupting the skin's integrity, generating microchannels that facilitate efficient drug permeation. This innovative technology boasts a captivating profile characterized by non-invasive drug delivery, enhanced efficacy and onset time, improved patient acceptability, self-administration possibilities, and precise dosing capabilities. Consequently, both academic institutions and industry have invested substantial resources in the development of microneedle systems for pharmaceutical delivery. This comprehensive review elucidates the multifaceted aspects of microneedle technology, encompassing its historical evolution, diverse materials, innovative designs, fabrication methodologies, and characterization techniques. The review extends to various microneedle types, including solid, hollow, coated, dissolving, swelling, and porous microneedles, as well as cutting-edge designs such as stimulus-responsive, iontophoresis-assisted, and bionic microneedles. Furthermore, we explore microneedle applications in vaccination, targeted delivery, and the administration of biologics, long-acting therapeutic agents, and cosmetics. Critical challenges in microneedle development, including dimensional considerations, safety concerns, acceptability factors, production scalability, regulatory hurdles, and sustainability issues, are thoroughly addressed, alongside a presentation of future prospects in this rapidly evolving field.

Keywords: Applications; Challenges; Classifications; Designs; Microneedles; Transdermal delivery.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Substances

LinkOut - more resources