Review on macromolecule-based magnetic theranostic agents for biomedical applications: Targeted therapy and diagnostic imaging
- PMID: 39710317
- DOI: 10.1016/j.xphs.2024.11.031
Review on macromolecule-based magnetic theranostic agents for biomedical applications: Targeted therapy and diagnostic imaging
Abstract
Clinical diagnostics and biological research are advanced by magnetic theranostic, which uses macromolecule-based magnetic theranostic agents for targeted therapy and diagnostic imaging. Within this review, the interaction of magnetic nanoparticles (MNPs) with biological macromolecules will be covered. The exciting potential of macromolecule-based magnetic theranostic agents to be used as a tool in drug delivery, photothermally therapy (PTT), gene therapy, hyperthermia therapy and photodynamic therapy (PDT) will be discussed. Innovative imaging technique: magnetic resonance imaging (MRI), magnetic particle imaging (MPI), fluorescence scanning, and photoacoustic scanning are revolutionizing biological diagnosis by potentially overcoming historical limitations. This review will cover the challenge of fabricating of macromolecule-based magnetic theranostic agents as a promising platform for theranostic that can combine therapies with diagnostics at subcellular level. Additionally, it looks at several chemical pathways leading to the process for generating MNPs, including the co-precipitation, the sol-gel, the hydrothermal synthesis, the polyol route, and the microemulsion technique. Eventually, the demands and prospects for magnetic theranostic are discussed, focusing on the requirement of further investigation to improve MNP structure towards biocompatible material and translation of these promising theranostic agents into clinical applications.
Keywords: Biomedical applications; Diagnostic imaging; Magnetic nanoparticles; Targeted therapy; Theranostic agent.
Copyright © 2024 American Pharmacists Association. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical