Transient Absorption Microscopy Maps Spatial Heterogeneity and Distinct Chemical Environments in Photocatalytic Carbon Nitride Particles
- PMID: 39711254
- PMCID: PMC11798357
- DOI: 10.1002/smll.202406652
Transient Absorption Microscopy Maps Spatial Heterogeneity and Distinct Chemical Environments in Photocatalytic Carbon Nitride Particles
Abstract
Limitations in solar energy conversion by photocatalysis typically stem from poor underlying charge carrier properties. Transient Absorption (TA) reveals insights on key photocatalytic properties such as charge carrier lifetimes and trapping. However, on the microsecond timescale, these measurements use relatively large probe sizes ranging in millimetres to centimetres which averages the effect of spatial heterogeneity at smaller length scales. A home-built Transient Absorption Microscopy (TAM) setup is reported and used to study single particles of carbon nitride (CNx), an emerging photocatalyst. For the first time, to the best of the authors' knowledge, µs-s timescales are explored within individual particles to gain a more complete understanding of their photophysics. The dynamics of trapped charges are monitored, enabling measurement and quantification of heterogeneity in the transient absorptance signal of individual CNx particles and within them. Particle-to-particle heterogeneity in the trapped charge density is observed, while spatial heterogeneity in lifetimes within a particle is revealed using a smaller probe beam with a ≈5 µm diameter. Overall, the observations suggest that contributions from different local environments independently influence charge trapping at different timescales. TAM on the micron and microsecond spatiotemporal resolution will aid in tackling design questions about optimal chemical environments for the promotion of photoactivity.
Keywords: carbon nitride; charge carrier dynamics; photocatalysis; transient absorption microscopy.
© 2024 The Author(s). Small published by Wiley‐VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Similar articles
-
Experimental determination of charge carrier dynamics in carbon nitride heterojunctions.Chem Commun (Camb). 2021 Feb 14;57(13):1550-1567. doi: 10.1039/d0cc06841a. Epub 2021 Jan 25. Chem Commun (Camb). 2021. PMID: 33491708
-
Spatiotemporal imaging of charge transfer in photocatalyst particles.Nature. 2022 Oct;610(7931):296-301. doi: 10.1038/s41586-022-05183-1. Epub 2022 Oct 12. Nature. 2022. PMID: 36224420
-
Exploring the Dynamics of Charge Transfer in Photocatalysis: Applications of Femtosecond Transient Absorption Spectroscopy.Molecules. 2024 Aug 23;29(17):3995. doi: 10.3390/molecules29173995. Molecules. 2024. PMID: 39274845 Free PMC article. Review.
-
Photodriven Charge Accumulation and Carrier Dynamics in a Water-Soluble Carbon Nitride Photocatalyst.ChemSusChem. 2021 Apr 9;14(7):1728-1736. doi: 10.1002/cssc.202002921. Epub 2021 Feb 25. ChemSusChem. 2021. PMID: 33586917 Free PMC article.
-
Charge Carrier Processes and Optical Properties in TiO2 and TiO2-Based Heterojunction Photocatalysts: A Review.Materials (Basel). 2021 Mar 27;14(7):1645. doi: 10.3390/ma14071645. Materials (Basel). 2021. PMID: 33801646 Free PMC article. Review.
Cited by
-
Transient Absorption Microscopy Explores the Effect of Pt Deposition on Charge Carrier Dynamics in Individual Carbon Nitride Particles.ChemSusChem. 2025 Jul 1;18(13):e202500203. doi: 10.1002/cssc.202500203. Epub 2025 May 8. ChemSusChem. 2025. PMID: 40244860 Free PMC article.
References
-
- Lewis N. S., Science 2016, 351, aad1920. - PubMed
-
- Wang Y., Vogel A., Sachs M., Sprick R. S., Wilbraham L., Moniz S. J. A., Godin R., Zwijnenburg M. A., Durrant J. R., Cooper A. I., Tang J., Nat. Energy 2019, 4, 746.
-
- Jean J., Brown P. R., Jaffe R. L., Buonassisi T., Bulović V., Energy Environ. Sci. 2015, 8, 1200.
-
- Spanggaard H., Krebs F. C., Sol. Energy Mater. Sol. Cells 2004, 83, 125.
Grants and funding
LinkOut - more resources
Full Text Sources